Peter Hinow

Peter Hinow

by
174 174 people viewed this event.

Additional Details

Affiliation - University of Wisconsin Milwaukee

Title of Talk - Automated Feature Extraction from Large Cardiac Electrophysiological Data Sets

Abstract

A multi-electrode array-based application for the long-term recording of action potentials from electrogenic cells makes possible exciting cardiac electrophysiology studies in health and disease. With hundreds of simultaneous electrode recordings being acquired over a period of days, the main challenge becomes achieving reliable signal identification and quantification. We set out to develop an algorithm capable of automatically extracting regions of high-quality action potentials from terabyte size experimental results and to map the trains of action potentials into a low-dimensional feature space for analysis. Our automatic segmentation algorithm finds regions of acceptable action potentials in large data sets of electrophysiological readings. We use spectral methods and support vector machines to classify our readings and to extract relevant features. We show that action potentials from the same cell site can be recorded over days without detrimental effects to the cell membrane. The variability between measurements 24 h apart is comparable to the natural variability of the features at a single time point. Our work contributes towards a non-invasive approach for cardiomyocyte functional maturation, as well as developmental, pathological, and pharmacological studies. This is joint work with Viviana Zlochiver, Stacie Kroboth (Advocate Aurora Research Institute), and John Jurkiewicz (graduate student at UWM).

 

Date And Time

Feb 9, 2021 04:00 PM to
Dec 26, 2024 05:00 PM
 

Location

Online Event
 

Event Types

 

Event Category

Share With Friends

0
0
image
https://mathbio.sas.upenn.edu/wp-content/themes/maple/
https://mathbio.sas.upenn.edu/
#084550
style1
paged
Loading posts...
/code/
#
on
none
loading
#
Sort Gallery
on
yes
yes
off
on
off