Event type: Seminar
Events
Erick Matsen
(Fred Hutchinson Cancer Research Center)
Making Bayesian phylogenetics like training a neural network
Show/Hide Abstract
Bayesian posterior distributions on phylogenetic trees remain difficult to sample despite decades of effort. The complex discrete and continuous model structure of trees means that recent inference methods developed for Euclidean space are not easily applicable to the phylogenetic case. Thus, we are left with random-walk Markov Chain Monte Carlo (MCMC) with uninformed tree modification proposals; these traverse tree space slowly because phylogenetic posteriors are concentrated on a small fraction of the very many possible trees. In this talk, I will describe our wild adventure developing efficient alternatives to random-walk MCMC, which has concluded successfully with the development of a variational Bayes formulation of Bayesian phylogenetics. This formulation leverages a “factorization
Gillian Queisser
(Temple University)
Ultrastructural 3D simulations of electrical and calcium dynamics in neurons and networks
Show/Hide Abstract
Neurons make use of their complex cellular and intracellular architecture to process and guide electrical and biochemical signals. To study this structure-function interplay, computational methods are detremental, since many parameters are not directly accessible in an experimental setting. This also means that the detailed three-dimensional morphology of cells and organelles needs to be included in modeling and simulation, which results in complex-domain problems, described by systems of coupled, nonlinear, partial differential equations. We have developed numerical discretization methods and fast solvers to address this general type of biological problem set, with a focus on optimal weak scalability on High Performance Computing infrastructures. We present some of the important biological problems revolving around cellular calcium signaling, coupled to electrical models, and the use of our NeuroBox Toolbox and the multiphysics platform uG4 to solve such ultrastructural 3D neuron models. Selected results show how neurons are capable of using their (intra)cellular architecture to fine-tune their response to exterior/network input.
Leah Edelstein-Keshet
(University of British Columbia)
From Cell polarity to intracellular networks in single and collective cell motility
Show/Hide Abstract
Cell migration plays a central role in embryonic development, wound healing and immune surveillance. In 2008, Yoichiro Mori, Alexandra Jilkine and I published a model for the initial step of cell migration, the front-back chemical polarization that sets a cell’s directionality. (More detailed mathematical properties of this model were described by the same group in 2011.) Since then, progress has been made in investigating how that simple “wave-pinning" mechanism is shaped and tuned by feedback from other proteins, such as actin, from the cell’s environment (extracellular matrix), from interplay with larger signaling networks, and from cell-cell interactions. In this talk I will describe some of this progress, with emphasis on links to experiments on melanoma cell motility. If time permits, I will also briefly describe more recent work on collective cell migration that we are currently undertaking.
Sarah Olson
(Worcester Polytechnic Institute)
Dynamics of movement in complex environments
Show/Hide Abstract
In this talk, we will highlight two different types of movement in viscosity dominated environments
Naomi Leonard
(Princeton University)
Opinion Dynamics with Tunable Sensitivity
Show/Hide Abstract
I will present a general model of continuous-time opinion dynamics for an arbitrary number of agents that sense or communicate over a network and form real-valued opinions about an arbitrary number of options. Drawing from biology, physics, and social psychology, an attention parameter is introduced to modulate social influence and a saturation function to bound inter-agent and intra-agent opinion exchanges. This yields simply parameterized dynamics that exhibit the range of opinion formation behaviors predicted by model-independent bifurcation theory but not exhibited by linear models or existing nonlinear models. Behaviors include rapid and reliable formation of multistable consensus and dissensus states, even in homogeneous networks, as well as ultra-sensitivity to inputs, robustness to uncertainty, flexible transitions between consensus and dissensus, and opinion cascades. Augmenting the opinion dynamics with feedback dynamics for the attention parameter results in tunable thresholds that govern sensitivity and robustness. The model provides new means for systematic study of dynamics on natural and engineered networks, from information spread and political polarization to collective decision making and dynamic task allocation.
This is joint work with Alessio Franci (UNAM, Mexico) and Anastasia Bizyaeva (Princeton).
The talk is based on version 2 of the paper “A General Model of Opinion Dynamics with Tunable Sensitivity”, which will be available on Tuesday October 13, 2020 here: https://arxiv.org/abs/2009.04332v2
Stefano Recanatesi
(University of Washington)
Constraints on the dimensionality of neural representations
Show/Hide Abstract
In the domain of computational/theoretical neuroscience a recently revived question is about the complexity of neural data. This question can be tackled by studying the dimensionality of such data: is neural activity high or low dimensional? How does the geometrical structure of neural activity depend on behavior, learning or the underlying connectivity? In my talk I will show how it is possible to link these three aspects (animal behavior, learning and underlying network connectivity) to the geometrical properties of neural data, with an emphasis on dimensionality phenomena. My results depart from neural recordings and aim at building understanding of neural dynamics by means of theoretical and computational tools. Such tools are mainly borrowed from the domain of neural networks dynamics, using a blend of large scale dynamical systems and statistical physics approaches.
Alexandria Volkening
(Northwestern University)
Modeling and measuring pattern formation in zebuctures
Show/Hide Abstract
Wild-type zebrafish (Danio rerio) are characterized by black and yellow stripes, which form on their body and fins due to the self-organization of thousands of pigment cells. Mutant zebrafish and sibling species in the Danio genus, on the other hand, feature altered, variable patterns, including spots and labyrinth curves. The longterm goal of my work is to better link genotype, cell behavior, and phenotype by helping to identify the specific alterations to cell interactions that lead to these different fish patterns. Using a phenomenological approach, we develop agent-based models to describe the behavior of individual cells and simulate pattern formation on growing domains. In this talk, I will overview our models and highlight how topological techniques can be used to quantitatively compare our simulations with in vivo images. I will also discuss future directions related to taking a more mechanistic approach to modeling cell behavior in zebrafish.
Gustavo Martínez-Mekler
(Instituto de Ciencias Físicas, UNAM)
Fertilization Regulatory Networks
Show/Hide Abstract
Fertilization is one of the fundamental processes of living systems. Here I will address marine external fertilization and comment on recent work on mammals. I will show experiments that substantiate that sea urchin sperms exhibit chemotaxis as they swim towards the ovum. They are guided by flagellum internal [Ca2+] concentration fluctuations triggered by the binding of chemicals from the oocyte surroundings. Based on experiment, I present a family of logical regulatory networks for the [Ca2+] fluctuation signaling-pathway that reproduce previously observed electrophysiological behaviors and provide predictions, which have been confirmed with new experiments. These studies give insight on the operation of drugs that control sperm navigation. In this systems biology approach, global properties of the [Ca2+] discrete regulatory network dynamics such as
Adriana Dawes
(Ohio State University)
Antagonistic motor protein dynamics in contractile ring structures
Show/Hide Abstract
Ring-shaped contractile structures play important roles in biological processes including wound healing and cell division. Many of these contractile structures rely on motor proteins called myosins for constriction. We investigate force generation by the Type II myosins NMY-1 and NMY-2 in ring channels, contractile structures in developing oocytes of the nematode worm C. elegans, as our model system. By exploiting the ring channel’s circular geometry, we derive a second order ODE to describe the evolution of the radius of the ring channel. By comparing our model predictions to experimental depletion of NMY-1 and NMY-2, we show that these myosins act antagonistically to each other, with NMY-1 exerting force orthogonally and NMY-2 exerting force tangentially to the ring channel opening. Stochastic simulations are currently being used to determine how NMY-1 and NMY-2 may be producing these antagonistic forces, with new tools from topological data analysis identifying persistent ring-like structures in the simulation data.
Sean Sun
(John Hopkins University)
Water Dynamics in Cells and Tissues
Show/Hide Abstract
The mammalian cell surface is highly permeable to water. The cell can also actively control the water flux across the cell surface by pumping solutes (mostly ions), and thereby controlling the cell water content and the cell volume. In this talk, we will explore how the cell also uses active water fluxes to move and change cell shape. The same players in the cell volume control system are involved in driving cell movement, especially in high viscosity environments. Mathematical modeling shows that the water-driven cell movement is energetically costly, but is necessary when the hydraulic environment is viscous. Finally, we will discuss how epithelial cell layers such as the kidney tubule pump water and generate mechanical force.
4
0
https://mathbio.sas.upenn.edu/event_listing_type/seminar/page/5/
https://mathbio.sas.upenn.edu/event_listing_type/seminar/page/3/