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The relationship between species diversity and sampled area is fundamental to ecology.
Traditionally, theories of the species}area relationship have been dominated by random-
placement models. Such models were used to formulate the canonical theory of species}area
curves and species abundances. In this paper, however, armed with a detailed data set from
a moist tropical forest, we investigate the validity of random placement and suggest improved
models based upon spatial aggregation. By accounting for intraspeci"c, small-scale aggrega-
tion, we develop a cluster model which reproduces empirical species}area curves with high
"delity. We "nd that inter-speci"c aggregation patterns, on the other hand, do not a!ect the
species}area curves signi"cantly. We demonstrate that the tendency for a tree species to
aggregate, as well as its average clump size, is not signi"cantly correlated with the species'
abundance. In addition, we investigate hierarchical clumping and the extent to which aggrega-
tion is driven by topography. We conclude that small-scale phenomena such as dispersal and
gap recruitment determine individual tree placement more than adaptation to larger-scale
topography.

( 2000 Academic Press
Introduction

Faced with an ecological assemblage, a natural
question is &&How many species are found in
a given area?'' This question has puzzled natural-
ists since the early 19th century (Connor
& McCoy, 1979). Aside from an intriguing ques-
tion, the species}area relationship is a conceptual
cornerstone for almost all theories of community
ecology (McGuinness, 1984; Rosenzweig, 1995).
Referring to their seminal work on biogeography,
sAuthor to whom correspondence should be addressed.
E-mail: plotkin@ias.edu
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MacArthur and Wilson write, &&Theories, like is-
lands, are often reached by stepping stones. The
&species}area' curves are such stepping stones''
(MacArthur & Wilson, 1967). Beyond their the-
oretical signi"cance, species}area curves also
form the basis for almost all estimates of extinc-
tion due to habitat loss (May, 1995; Pimm
& Raven, 2000). More generally, the species}area
relationship helps ecologists to assess the relative
importance of those factors*competition, dis-
persion, adaptation to environment, chance,
etc.* which determine species' geographic
ranges.
( 2000 Academic Press
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The most common characterization of the spe-
cies}area relationship (SAR) posits a power law:
the number of species is proportional to a con-
stant power of sampled area. This relationship,
S"cAz, was "rst postulated by Arrhenius (1921).
Nevertheless, this model did not enjoy universal
popularity until the pioneering work of Preston
(1962) followed by MacArthur & Wilson (1963).
Macarthur and Wilson considered the power law
in light of a dynamic equilibrium of species ex-
changes between islands.

In 1975, May endowed the power-law model of
the SAR with a "rm theoretical underpinning by
relating it to the relative abundances of species
(May, 1975). May argued that in a complex com-
munity the relative abundances of species should
follow the lognormal distribution: the proportion
of species with n individuals is a Gaussian func-
tion of log n. Assuming this abundance distribu-
tion, May showed that the power-law SAR must
hold over a wide range of spatial scales. In order
to perform this derivation, May assumed that
individuals are drawn independently from the spe-
cies abundance distribution, yielding a spe-
cies}individual curve. In order to translate the
species}individual curve into the species}area
curve, May assumed that individuals are placed
in space with a constant density. The entire pro-
cess is equivalent to drawing individuals from the
abundance distribution and placing them in
space (Poisson-) randomly.

Following May's approach, Coleman de-
veloped a random-placement null model of the
SAR (Coleman, 1981; Coleman et al., 1982). Cole-
man provided explicit equations for the spe-
cies}area curve which results from given species
abundances. Speci"cally, given N species with
abundances n

1
, n

2
, n

3
,2, n

N
, Coleman derived

equations for the species}area curve assuming
that individuals are placed in space randomly
and independently. As Coleman states, the ran-
domness assumption &&presupposes a lack of cor-
relation in the locations of individuals. [As such,]
it can be considered a zeroth-order hypothesis''.
In other words, Coleman's model ignores the
possibility of inter- and intra-speci"c spatial ag-
gregation. Although the random-placement hy-
pothesis is violated in many ecological systems,
few data sets were available in 1981 by which to
form or judge more explicit models. (Coleman
did employ avifaunal data from Pymatuning
Lake, Pennsylvania for comparison to his theory.
Nevertheless, the region contained fewer than 40
identi"ed species.)

Since the work of Coleman and May, there
have been relatively few explicit e!orts to extend
the &&zeroth-order hypothesis'' of a random place-
ment SAR. In fact, current theories of biogeogra-
phy and diversity often still utilize Coleman's
model (e.g. Hubbell, 1997). The prevailing wis-
dom generally holds that the species}area curve
is driven by random sampling from the abund-
ance distribution*although this belief is not
held without exceptions (Hubbell & Foster,
1983). The explicit, theoretical e!orts towards
a non-random theory include work by Leitner
& Rosenzweig (1997), Buckley (1982), McGuin-
ness (1984), and Gotelli & Graves (1996). Re-
cently, Kunin (1998) and Ney-Ni#e & Mangel
(1999) have developed spatial models based upon
the geographic range of each species. In general,
these spatial-re"nements upon Coleman's model
have seldom been compared to extensive, empiri-
cal data.

With less of an emphasis on a spatial model for
the species}area curve, previous research has
analysed spatial patterning in tropical forests. He
et al. (1987) analyse conspeci"c patterning by
using nearest-neighbor statistics and the Don-
nelly clumping index. They also investigate the
interplay of aggregation and topography. A
comparison of our results with theirs will prove
interesting; their analysis does not quantify top-
ography as a hierarchical aggregation e!ect. Ba-
tista & Maguire (1998) provide a comparative
overview of stochastic point processes and their
application to tropical forests. They focus on the
e!ect of the forest canopy on its understory. Con-
dit et al. (2000) o!er an extensive, comparative
study of aggregation across tropical forest plots.
In a seminal, qualitative investigation, Hubbell
& Foster (1983) provide a largely biological dis-
cussion of spatial patterning in the canopy of
a tropical forest, focusing on the maintenance of
diversity. Most of their analysis relies on visual
characterization of spatial patterns. Their dis-
cussion of the biological and ecological factors
driving aggregation provides a uniquely well-in-
formed interpretation of the more quantitative
results in this paper.



TABLE 1
¹ree density and diversity at each of three 50-h
plots of tropical forest.

Plot name Location Stems Species

Pasoh Malaysia 320 902 817
Lambir Malaysia 325 335 1171
HKK Thailand 96 072 251

We develop and test our spatial model at Pasoh, and then we verify
the results at Lambir and HKK. The table indicates the total
number of woody stems '1 cm in diameter and the total number of
species found in each plot. For a complete list of references, consult
the CTFS web site at http://www.si.edu/ctfs.
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This paper aims to develop a spatially explicit,
theoretical framework for the species}area curve
in a tropical forest. By doing so, we will assess the
relative importance of small-scale (e.g. dispersal,
gap-recruitment) vs. large-scale (e.g. topographic)
phenomena as determinants of tree-placement. In
the spirit of Coleman and May, we will assume
throughout that the abundance of each species is
known. Given these abundances, we will "rst
investigate the impact of local aggregation on the
species}area curve. Then, we will investigate heir-
archial clumping and larger-scale e!ects of envi-
ronment. We develop our models of the SAR
hand in hand with comparisons to extensive data.

Tropical Forest Data

There could hardly be an ecological system
more well-suited for species}area and spatial-ag-
gregation research than tropical forests. Unlike
avifauna, trees have the obvious advantage of
a sedentary life history*which makes them rela-
tively easy to locate and identify. Moreover,
tropical forests boast an astounding diversity of
tree species (up to 1000 within 50 h), providing
excellent resolution for our analyses. Finally, due
the impressive e!orts of the Smithsonian Center
for Tropical Forest Sciences, we have currently
identi"ed the location and species for a sum-total
of over two million individual trees.

In this paper, we investigate spatial aggrega-
tion and the SAR in a 50-h, fully censused tree
plot from the Pasoh forest on peninsular
Malaysia. Compared with several other 50-ha
censuses, Pasoh has the advantage of a fairly
homogenous environment and a relatively rich
species diversity. These qualities make Pasoh an
excellent choice as the focus of our study. In
addition, throughout the paper we also refer to
two other 50-ha plots as veri"cation of the gener-
ality of our methods. Each of the 50-ha Forest
Dynamics Plots is part of a long-term research
program coordinated by the Center for Tropical
Forest Science. The plots are located in the fol-
lowing forests: Pasoh Forest Reserve, Peninsular
Malaysia, 1996 census; Huai Kha Khaeng Wil-
dlife Sanctuary (HKK), Thailand, 1995 census;
Lambir Hills National Park, Sarawak, Malaysia,
1999 census. In every plot, each woody stem
'1 cm diameter has been identi"ed to species,
measured for girth, and spatially mapped to at
least 1 m. The number of such stems, and the
number of species among them, varies greatly
from plot to plot (Table 1).

We will include all free-standing stems '1 cm
diameter throughout our analyses. In general,
aggregation patterns bene"t from a separate
large-tree/small-tree treatment*especially for
comparison with the theories of Janzen (1970)
and Connell (1971). Nevertheless, for the purpose
of investigating the species}area curve, it is best
to include every individual in the data set. Almost
all of our results remain true if we analyse, in-
stead, stems '5 cm in diameter. When sum-
marizing results, we will often classify species as
either rare or abundant. Following Hubbell
& Foster (1986), we de"ne a species as rare if it
has one or fewer stems per hectare, on average.

The Random-placement Model

We begin with a brief review of Coleman's
&&zeroth-order'', random-placement theory of spe-
cies}area curves. Consider a region of total area
A

0
within which individuals of various species

are located. Assume that there are N species and
that the i-th species is represented by n

i
indi-

viduals. Consider any sub-region of area A(A
0
.

Under the assumption of independent, random
placement of individuals, the probability that
a given member of the i-th species does not reside
in a sub-region of size A is simply (1!A/A

0
).

Similarly, the probability that all members of
species i lie outside of A is given by (1!A/A

0
)ni .



FIG. 1. The random placement model signi"cantly
overestimates diversity for areas in the 0.04- to 45-ha range.
The "gure shows graphs of the actual SAR measured at
Pasoh ($1 S.D.) compared to the SAR predicted by the
random-placement model ($1 S.D.). The inset repeats the
graphs on log-linear axes; the solid lines demark the $1
S.D.-con"dence interval predicted by Coleman's model. As is
clear from the graphs, the observed SAR is far outside of the
random-placement prediction. The same result holds at
HKK and Lambir (not shown).
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Thus, the probability that at least one member of
the ith species resides in the sub-region A is
1!(1!A/A

0
)ni . This in turn yields an expres-

sion for the mean number of species in A, denoted
S(A), and the variance, denoted p2(A) (Coleman,
1981):

S(A)"N!

N
+
i/1

(1!A/A
0
)ni , (1)

p2(A)"
N
+
i/1

(1!A/A
0
)ni!

N
+
i/1

(1!A/A
0
)2ni .

(2)

It is often assumed that, given the abundances
of the species, eqns (1) and (2) provide an ad-
equate model of the SAR in tropical forests (e.g.
Hubbell, 1997).

Fortunately, it is easy to test the adequacy of
eqns (1) and (2) for tropical forests. Early tests by
Hubbell at Barro Colorado Island (BCI) indicate
a failure of the random model for 186 species in
the canopy '20 cm in diameter (Hubbell
& Foster, 1983). Our independent test of the
random-model will include all trees '1 cm in
diameter. In the interest of precision we must
de"ne the species}area curve carefully. Following
Harte et al. (1999) and Plotkin et al. (2000), we
de"ne the species}area curve for a rectangular
region of total area A

0
. Let A

i
"A

0
/2i denote the

area of a rectangular patch obtained after i bisec-
tions of A

0
(bisections chosen perpendicular to

the longer dimension). There are 2i disjoint
patches of area A

i
which naturally partition A

0
.

Loosely speaking, the empirical species}area
function S(A) is de"ned as the average number of
species found in an area of size A. By long-
standing convention, we evaluate S(A) by aver-
aging over disjoint patches of area A (Connor
& McCoy, 1979). In this manner, we let S(A

i
)

denote the average number of species found in
a patch of area A

i
. In other words, we de"ne

S(A
i
)"

1
2i

j"2i

+
j/1

(d species in the j-th patch

of area A
i
). (3)
In particular, S(A
0
) denotes the total number

of species found in the entire plot. We de"ne M as
the total number of individuals in the plot, i.e
M"+N

i/1
n
i
.

The SAR predicted by random placement
signi"cantly overestimates diversity at Pasoh
(Fig. 1). In fact, for all three forests the measured
SAR is well outside of the two-standard-devi-
ation con"dence interval of the random model.
This con"dence interval is given by 2p from Eq.
(2). The discrepancy between the random model
and the empirical data is even larger than the
discrepancy originally measured for large trees
alone at BCI (Hubbell & Foster, 1983). A cursory
glance at Fig. 1 may suggest that Coleman's
model is inaccurate for mid-sized areas, but very
accurate near 0 and 50-ha. This is an artifact. By
construction, Coleman's model must agree with
the actual data at 0 and 50 ha.

The extent to which random placement fails to
capture the SAR is, in fact, quite severe. Cole-
man's model signi"cantly overestimates diversity
for all areas within the range 0.04}45 ha (see Fig. 1,
inset). For example, at Pasoh the measured value
of S(A

4
)"S(3.1 ha) is more than nine standard

deviations (S.D.) less than the predicted value.
On average over areas ranging from 1.5 to 25 ha,



FIG. 2. The observed SAR of Pasoh compared to the
SAR predicted by Coleman's random-placement model, on
a log-linear graph. Unlike 50-ha curves in Fig. 1, the curves
displayed here are generated from a single subplot of area
A

6
+0.78 ha. At this small-scale, the random-placement

prediction is much closer to the observed SAR than at the
50-ha scale.
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the random-placement model overestimates di-
versity 7.2 S.D.s at Pasoh, 4.0 S.D.s at HKK, and
17.2 S.D.s at Lambir. As these results indicate,
beyond a doubt the random-placement model
fails to account for the observed SAR. The actual
data must therefore follow some non-random,
spatial patterning.

Figure 1 also reveals another signature of spa-
tial aggregation. For each i, the diversity found in
patches of area A

i
shows larger variance in reality

than in Coleman's model. This large variance
suggests spatial aggregation: some patches have
large diversity, while others are dominated by
a few, clumped species. Observed variance is
much larger than Coleman's model in all three
plots.

The departure from random placement is ap-
parent to us because of the large scale at which
the plots have been censused. We test this by
temporarily restricting our attention to a single
subplot of small area. In particular, we choose
a single subplot from Pasoh of area A

6
+0.78 ha,

measure the abundances within the subplot, and
again compare Coleman's model to the observed
SAR. When restricting our attention to this sub-
plot, the random-placement model provides an
adequate characterization of the SAR (Fig. 2). At
small spatial scales, the entire subplot is smaller
than the correlation length of spatial clumps;
hence random placement describes the spatial
pattern fairly well. This trend*that the random-
placement model can be rejected for large plots,
but not for small plots*suggests that random
placement will provide an increasingly poor
model for plots even larger than 50 ha.

Taken together, the results in Figs 1 and
2 underscore the need for a decidedly non-ran-
dom model of tropical forests, especially for large
areas. Throughout the sequel, we aim (i) to ana-
lyse the spatial aggregation in the forest plots, (ii)
to develop a model which characterizes this ag-
gregation, producing the observed species}area
curves, and (iii) to investigate the relative strength
of topographic e!ects on aggregation.

A Preliminary Measure of Aggregation: propor-
tion of Neighbors which are Conspeci5c

We begin our analysis of the aggregation pat-
terns with a somewhat non-standard approach.
A more traditional analysis*which eventually
yields a spatial model*will be delayed until the
next section. Nevertheless, the statistic which we
investigate in this section will later provide im-
portant information for determining the para-
meters of our spatial model.

Most univariate measures of aggregation es-
sentially ask the question &&How far apart are two
conspeci"c trees?'' Nevertheless, in this prelimi-
nary section we will ask the inverse question:
&&Given two trees a distance d apart, how often
are they conspeci"c?'' This question yields an
interesting measure of aggregation. We will cal-
culate this aggregation statistic for each plot and
compare it to the value predicted under a ran-
dom-placement model. Speci"cally, for each dis-
tance d we de"ne P

d
as the proportion of trees in

the plot, distance d apart, which are the same
species. We calculate this proportion by consid-
ering each pair of trees in turn. Notice that P

d
is

inherently inter-speci"c: it requires knowledge of
tree locations for all species.

In a random-placement model, P
d

clearly does
not depend on the distance d. P

d
is determined by

the relative abundances of the species alone. If
individuals are located randomly and indepen-
dently, then P

d
is simply the chance that two

randomly-chosen individuals are of the same spe-
cies. This probability does not depend upon dis-
tance, and it is easily expressed as a quantity



FIG. 3. Graph of the aggregation statistic P
d
!P

random
for

each of the forests Pasoh, HKK, and Lambir. All three
forests possess an elevated proportion of conspeci"cs at
distances d(200 m. The x-intercept of the graph
P
d
!P

random
yields an upper bound on mean dispersal dis-

tance and gap-size. HKK demonstrates the most aggrega-
tion at large distances (d(385 m).
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closely related to the Simpson index:

P
random

"

N
+
i/1

n
i
(n

i
!1)

M(M!1)
. (4)

As indicated by Monte-Carlo simulations of ran-
dom placement, the S.D. of P

random
is small

((0.005) in all three plots. A measured value of
P
d

greater than P
random

indicates a higher propor-
tion of conspeci"cs distance d apart relative to
the random model. Trees generally propagate
locally, and hence we expect that P

d
'P

random
for

small distances, but P
d
)P

random
for large distan-

ces. This trend is veri"ed in all three forests by
graphing P

d
!P

random
(Fig. 3). (Note that the

value of P
random

is di!erent in each forest because
the relative abundances di!er.)

Figure 3 illustrates the aggregation metric
P
d
!P

random
in the three forest plots. For example,

Fig. 3 reveals that on average, when standing at
a given tree in Pasoh, one "nds an elevated pro-
portion of conspeci"c trees at distances
d(250 m away, but thereafter one "nds no more
conspeci"cs than expected at random, given the
relative abundances of the species in Pasoh. This
observation provides an upper-bound on those
factors which determine correlation length for
small-scale cluster formation*e.g. dispersal dis-
tance, gap size, etc. In particular, at Pasoh we do
not expect signi"cant clumping to occur at dis-
tances greater than 250 m. On the other hand,
clumping seems to be more widespread at HKK
and Lambir. These preliminary observations will
prove useful in later sections.

5 The Ripley-K Measure of Aggregation

Unlike the statistic P
d
!P

random
, which requires

information about the location of all individuals
in the plot, we henceforth focus on strictly intra-
speci"c aggregation measures. In particular, we
will employ the well-understood, second-moment
measure called Ripley's K (Ripley, 1976). As with
the statistic P

d
!P

random
, we will compare the

observed values of K to those predicted under the
assumption of random placement. Eventually, we
aim to parameterize our spatial model using the
information gleaned from Ripley's K*which is
the primary reason why we choose to measure K.
In the meantime, we will use Ripley's K to assess
whether each species is signi"cantly clumped or
not.

COMPUTING RIPLEY'S K

If the individuals of a given species are placed
randomly in the plot*i.e. via a Poisson-process
with intensity j*then the expected number of
stems within a circle of radius d is simply jnd2.
Ripley's K quanti"es the departure from the ran-
domized situation. Clustering increases K, while
regularity decreases it. Speci"cally, given a point-
process on the plane, Ripley's K-function is de-
"ned as

K(d)"j~1E (number of extra events within a

distance d from an arbitrary event). (5)

Given a particular map of n events s
1
, s

2
,2, s

n
within a region of area A

0
(in our case, the

locations of stems of a "xed species), the canoni-
cal edge-corrected estimator of K is given by
Ripley (1976):

KK (d)"jK ~1
n
+
i/1

n
+

j/1,jEi

w(s
i
, s

j
)~1II(Es

i
!s

j
E)d)/n.

(6)
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In eqn (6), jK "n/A
0

estimates the intensity, II is
the indicator function of an event, and the weight
w(s

i
, s

j
) is the proportion of the circumference of

the circle centered at s
i
, passing through s

j
, which

lies in A
0
. Given j, if the underlying point-pro-

cess is stationary and isotropic, then KK is an
unbiased estimator of K (Cressie, 1991). jK is a bi-
ased estimate of j, but only slightly so. Assuming
random placement, K(d)"nd2.

We have computed Ripley's K using eqn (6) for
every species in Pasoh, HKK, and Lambir. More
speci"cally, we calculate KK (d) for 20 values of
d equally spaced between 0 and d

max
. The quanti-

ty d
max

signi"es the largest distance at which we
measure clumping in the plot. We use Fig. 3 as
a guideline for choosing d

max
in each plot: we use

d
max

"250 m at Pasoh, d
max

"385 m at HKK
and Lambir. As an example, at Pasoh we have
calculated KK (d) for d"12.5,25,37.5,2,250 m. In
order to test spatial randomness, we compile the
information about KK (d) into a single Cramer-von
Mises-type statistic

k"P
=

0

(JKK (h)!hJn)2dh. (7)

In practice, we evaluate this statistic using
a Riemann sum from 0 to d

max
. In order to test

random placement, for each species we compare
the measured k-statistic to the maximum k-statis-
tic generated from 19 Monte-Carlo simulations
of a Poisson process (i.e. of random placement). If
the measured k is larger than the maximum
simulated k, denoted k

max
, then we conclude at

the 5% con"dence level that the species is not
distributed at random (Diggle, 1983).

In principle, this procedure allows us to classify
each species as either clumped or not clumped.
Of course, we only consider species with *2
stems. &&Not-clumped'' is the null hypothesis; fail-
ure to reject the hypothesis should not compel us
to accept it. With this warning in mind, we clas-
sify a species as not clumped meaning, simply,
that it was not possible to reject this hypothesis
on the basis of the k-statistic. When a species is
rare (n

i
)50), then the power of the k-statistic*

or any other statistic*is dramatically dimin-
ished. We will take special care when interpreting
the results of our statistics on rare species.
RESULTS OF RIPLEY-K ANALYSIS

Of the 798 species at Pasoh with at least two
stems, 661 of them (83%) are classi"ed as aggreg-
ated via k. Of these aggregated species, 513 of
them (78%) have more than 50 stems. On the
other hand, out of the 137 non-aggregated spe-
cies, most of them (85%) have 50 stems or less. In
other words, fewer of the rare species are classi-
"ed as clumped, relative to the abundant species.
This trend, which He et al. (1987) noticed as well,
is sometimes overemphasized in the literature.
The trend certainly results as an artifact of the
statistics on small sample sizes. In general, when
n
i
(50 at least one Monte-Carlo simulation re-

ceives a very large k-statistic, making it di$cult
to reject the null-hypothesis of random-place-
ment. In other words, when a species is rare, for
statistical reasons alone we often cannot justify
labeling it as clumped.

Ignoring the rare species for the moment, of the
534 species with '50 stems, 513 of them (96%)
are aggregated according to k. Species at HKK
and Lambir demonstrate a comparable tendency
to aggregate. In short, almost all species which
are not rare are clumped. These results contrast
sharply with analyses of a temperate forest
(Szwagrzyk & Ptak, 1981; Bodziarczyk et al.,
1999; Bodziarczyk & Szwagrzyk, 1996), but agree
with recent, comprehensive, inter-plot analyses of
tropical forests by Condit et al. (2000).

We may also use the k-value to rank species by
their tendency to aggregate (cf. Condit et al.,
2000). Both a larger number of clumps and
a tighter average clump-size increase the k-statis-
tic. Hence, the k-statistic provides a "rst-cut, ag-
glomerate measure of overall aggregation. To be
precise, the value of k itself means little without
comparison to the distribution of k-statistics gen-
erated by many simulations of random place-
ment. Given an observed k-value, k

observed
, if

a very large number of random simulations were
feasible then the quantile in which k

observed
lies

would yield a good index of aggregation. As
a surrogate to this computationally intensive in-
dex, we use 19 simulations and the value of
k!k

max
in order to rank the species by aggrega-

tion. For each species, the value k!k
max

indi-
cates the extent to which the species is more (or
less) aggregated than the most aggregated-look-
ing random-placement simulation.
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Figure 4 illustrates species at Pasoh which
range from the most-clumped towards the least-
clumped according to their k!k

max
ranking.

The rankings seem to agree with an intuitive
assessment of aggregation. For example, the spe-
cies with the largest k!k

max
, Pentace strych-

noidea, is visibly more aggregated than any other
species. As Fig. 4 indicates, this ranking allows us
to stratify all the species by their aggregation
tendencies.

Poisson Cluster Model

We have seen that the k-statistic, compiled
from the entire Ripley K(d)-curve, yields a conve-
nient, single measure of aggregation. Neverthe-
less, the K(d)-curve contains far more informa-
tion than the value of k alone. In particular, we
desire a more speci"c characterization of ag-
gregation than a single index. We desire a model
of the aggregation patterns. In this spirit, we
choose to characterize local aggregation patterns
by (i) a measure of the number of clumps and (ii)
a measure of the mean clump size. Furthermore,
for each species, we wish to distill these two
parameters, denoted by o and p, from the ob-
served K(d)-curve.

SPECIFICATION OF THE CLUSTER MODEL

We model the spatial pattern of each species by
an independent, Poisson cluster process. This
point-process is well understood theoretically
(Cressie, 1991; Neyman & Scott, 1958), and it has
the advantage of simplicity. Despite its simplicity,
as we shall see, this model of aggregation cap-
tures enough information about spatial-pattern-
ing to reproduce the observed species}area curve
with great accuracy. Most important, we choose
the Poisson cluster process because its probabil-
istic properties (in particular, its expected Ripley
K-curve) are well-understood in the literature;
this fact will allow us to estimate parameters
without much di$culty.

We use the following axiomatic de"nition of
the Poisson cluster process.

1. &&Parents'' form a Poisson process in the
plane with intensity o.

2. Each &&parent'' produces a random number
of &&o!spring'', drawn independently from
a "xed distribution.
3. The positions of the &&o!spring'' relative to
their parent are drawn independently from
a "xed bivariate probability density func-
tion h.

4. The "nal pattern consists only of the &&o!-
spring'' events.

More speci"cally, we stipulate that the o!-
spring of a parent follows a radially symmetric
Gaussian distribution with distribution function

h(x, y)"(2np2)~1 expA
!(x2#y2)

2p2 B. (8)

In particular, the mean squared distance from an
o!spring to its parent is 2p2 and the mean dis-
tance is pJn/2. As desired, o measures the den-
sity of clumps and p measures clump size. We
choose to describe o in units of clumps-per-
square-meter and p in units of meters.

In practice, once the parameters (o
i
,p

i
) have

been estimated for species i, we simulate the clus-
ter process by placing xo

i
5]105(m2)#1/2y

&&parents'' in the plot according to a uniform
distribution. Next, we assign each of n

i
stems to

a randomly chosen parent, and position the stem
according to eqn (8), relative to the parent. In
particular, the expected number of stems per
clump is given by n

i
/(o

i
5]105). We impose

toroidal boundary conditions in the event that
a stem is placed outside of the 50-ha plot. Finally,
we erase the &&parents''*which were only used in
order to position the individual clumps. For each
species i, the cluster process is completely deter-
mined by the parameters (n

i
, o

i
, p

i
).

By choosing this model, we certainly imply
that clusters arise from local propagation. In this
sense, the Poisson cluster process models ag-
gregation caused by local seed dispersal or gap
recruitment. The observed clump size for each
species is surely determined by a number of biotic
and abiotic factors other than seed dispersal and
gap recruitment. Nevertheless, dispersal and re-
cruitment are prominent among these factors.
We have used the words &&parent'' and &&o!spring''
as an analogy to these processes. We emphasize,
however, that our notation does not imply, how-
ever, that every observed cluster arises from
a single &&parent'' tree. Nor do we believe that our
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stochastic process represents the actual mechan-
ics which caused the formation of clusters in the
forest. Instead, we are using the cluster process
because it o!ers a convenient, phenomenological
model to describe the pattern which results from
the myriad of mechanistic forces which determine
local aggregation patterns. More global patterns
of aggregation (e.g. those guided by altitude
speci"city) and hierarchical aggregation will be
considered later.

ESTIMATING CLUSTER PARAMETERS

Having speci"ed the cluster model, all that
remains is to estimate the parameters (o,p) for
each species. We estimate the best-"t parameters
by using the measured KK (d) curve. To this end, we
rely on the well-established fact that a Poisson
cluster process (o,p) results in the following K(d)
curve (Cressie, 1991):

K(d)PCP"nd2#o~1 A1!expA
!d2

4p2 BB. (9)

Given the empirical values KK (0),2, KK (d
max

), we
choose (o, p) such that K(d)PCP most closely "ts
the observed values. Choice of the upper limit
d
max

has a signi"cant e!ect on the resulting para-
meter "t. For instance, using d

max
(385 m at the

HKK plot does not provide near as good as "t as
d
max

"385 m. In this sense, the statistic
P
d
!P

random
illustrated in Fig. 3 provides crucial

information for each plot: it indicates the proper
range of distances over which to parameterize
our spatial model.

Diggle (1983) suggests "tting (o, p) by minimiz-
ing the integral

P
dmax

0

(K(h)c!(K(h)PCP)c)2dh, (10)

for some tuning constant c+1/2. (We found that
c"1/4 was most e!ective.) In order to minimize
eqn (10) we must specify an initial parameter
guess for (o, p). This choice has a dramatic e!ect
on the eventual parameter "t. Let (dM , KK (dM )) be the
maximum point on the observed KK (d) curve (in
a tie, choose the largest such dM ). Following
Diggle, we specify our initial parameter guess as
(o, p)"(1/KK (dM ), dM /4). We have estimated para-
meters by "tting eqn (9) to the observed values
via minimization [eqn (10)] and via a more tradi-
tional curve-"tting technique (minimizing the
s2 merit function of the sum squared residuals).
Both methods provide comparable parameters.

Having computed the parameters (o
i
, p

i
) for

each species, we may compare the resulting Pois-
son cluster model to the actual data. Visually, the
cluster model of each species is strikingly similar
to the actual data (Fig. 4). Of course, the simplis-
tic, radially symmetric model does not reproduce
the "ne details of all tree placement, but our
method has the ability to separate a species into
a best-"t number of clusters and best-"t cluster
size. Careful inspection of Fig. 4 reveals that the
parameter estimation, although largely accurate,
is not perfect. For example, the method appears
to overestimate slightly the number of Mallotus
leucodermis clusters, and underestimate the aver-
age Phaeanthus ophthalmicus cluster size. The
method also fails to capture the sharpness of the
cluster margins in some cases*e.g. Pentace
strychnoidea and Cleistanthus sumatranus. To
a "rst approximation, however, the model match-
es our complex, visual intuition of aggregation
(Fig. 4).

A rigorous goodness-of-"t between model and
data, for each species at each plot, is certainly
possible. Nevertheless, we refrain from this stat-
istical exercise. Given the topic of our investiga-
tion, the important criterion by which to judge
the cluster model should be its ability to repro-
duce the observed species}area curve. This cri-
terion provides a practical, ecologically moti-
vated metric. Moreover, whether or not the
model produces the correct SAR, we will deduce
information about the extent and manner in
which individual-level aggregation e!ects spe-
cies-level patterning.

Before examining the SAR, we pause brie#y to
inspect the distribution of clump sizes estimated
by our best-"t parameters. The distribution of
p values is right-skewed normal at all three plots.
Given p, recall that pJn/2 yields the mean dis-
tance from an individual to the center of the
clump. This corresponds to mean patch size, and
is determined primarily by dispersal distance and
gap-sizes. Figure 5 shows a histogram of mean
clump radius (pJn/2) for those species at Pasoh
which are classi"ed as clumped. From Fig. 5 we



FIG. 4. Examples from Pasoh of the observed spatial pattern of a species (upper rectangle of each pair) compared with the
pattern simulated by the Poisson cluster model (lower rectangle). Each rectangle encompasses 50 ha. The species are ranked
according to their values of k!k

max
; their ranked position is denoted in parentheses. This aggregation statistic appears to

agree with an intuitive measure of clumping. Despite minor discrepancies, the Poisson cluster model provides a visually
acceptable reproduction of the spatial pattern for each species.
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see that 250 m is a decent upper-bound on mean
patch size at Pasoh*which agrees with our
earlier estimate in Section 4 (cf. Fig. 3).
THE SAR GENERATED BY THE CLUSTER MODEL

For Pasoh we have simulated the entire 50-ha
plot by overlaying each independently simulated



FIG. 6. The observed species}area curve at Pasoh, Lam-
bir, and HKK along with the predictions via a random-
placement model and the Poisson cluster model. In contrast
to the random-placement model which overestimates diver-
sity, the cluster model reproduces the SAR accurately*es-
pecially for areas '0.2 ha. In each graph, the inset displays
the same information on log-linear axes: Random placement
model, } } } ; Cluster model, ** ; Observed data, ) ) ) )

FIG. 5. A frequency chart of mean clump radius (esti-
mated by pJn/2) for aggregated species at Pasoh. Notice
that 250 m provides a decent upper bound on dispersion
distance, as seen independently in Fig. 3.
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species. The resulting model SAR is almost indis-
tinguishable from the actual SAR. The model
very slightly overestimates diversity for areas
(0.2 ha, but accurately characterizes the SAR
from 0.2 to 50 ha. For this large range of areas,
the observed SAR falls within the con"dence in-
tervals for the model (which are extremely tight,
smaller than the rectangular dots used Fig. 6). We
have repeated the entire method ("tting para-
meters and simulating the point process) at HKK
and Lambir; in all three plots we "nd an excellent
agreement between model and data (Fig. 6). In
short, we may conclude that the cluster model
accurately reproduces enough information about
spatial patterning to generate the correct spe-
cies}area curve, given the abundances of species.
In this sense, the Poisson cluster model completes
the &&zeroth-order analysis'' pioneered by Cole-
man.

Given the simplicity of the cluster model, the
"delity with which it reproduces the SAR in each
forest is somewhat surprising. We have ac-
counted for clustering only on a relatively local
scale. We have not accounted for larger-scale,
environmentally driven patterns. We have not
used information about tree-diameter. Most im-
portantly, we have ignored all inter-speci"c spa-
tial patterns. The Poisson cluster model, the Rip-
ley-K measurements, and the (o

i
, p

i
) parameter

estimation are all intrinsically univariate. Despite
these simpli"cations, the resulting SAR agrees
with the empirical SAR. In other words, whatever
non-random, inter-speci"c patterns or environ-
mental patterns exist, they do not in#uence the
species}area curve. For each species, the SAR
depends only on the location of conspeci"c trees;
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the placement of other species is relatively unim-
portant. In some sense, this result suggests that
interspeci"c competition may have only a limited
or indirect e!ect on the species}area curve at this
scale. Our results also suggest that, despite its
prominence in ecology at large, the species}area
curve may be a somewhat insensitive indicator of
community structure.

Abundance and Aggregation

The methods developed thus far are su$cient
to rank species by aggregation (Fig. 4), to repro-
duce intra-speci"c patterns in all three plots
(Fig. 4), and to characterize accurately the spe-
cies}area curve (Fig. 6). Thus, we may have some
con"dence in the practical and biological rel-
evance of our model and its estimated para-
meters. We now investigate which biological fea-
tures are correlated with the parameters of our
model. We will address the relationship between
a species' abundance and its tendency to aggregate.

Figure 7 shows a graph of species abundance
n
i
versus the k-statistic for Pasoh (compare with

Fig. 3 in He et al., 1987). As mentioned before, the
statistic k alone, without reference to its quantile
position in Monte-Carlo trials, may be a poor
choice of aggregation index due to autocorrela-
tion problems. Alternatively, we could use
k!k

max
over 19 simulations. These provisos

aside, we will investigate the relationship between
n and k.
FIG. 7. Graph of abundance vs. the clumping index k for
Pasoh. We only graph those species with abundance greater
than 50 stems. Spearman rank correlation reveals a statist-
ically signi"cant, but very small, negative correlation be-
tween n

i
and k for these species.

i

We "nd that there is a statistically signi"cant,
but extremely slight negative correlation between
abundance and aggregation tendency at Pasoh,
indicated by k (cf. Fig. 7). This result agrees with
the parallel result of He et al. (1987) based upon
the Donnelly index of aggregation. Similar re-
sults hold at HKK and Mudumalai. Our correla-
tion statistics are based only on those species
with n

i
'50. We cannot place much con"dence

in the clumping index for less abundant species
where k is likely prone to autocorrelation errors.
This is unfortunate because roughly one-third of
the species in Pasoh have fewer than 50 stems.
Although the standard Pearson correlation coef-
"cient of (n

i
, k

i
) is insigni"cant (r"!0.0884), the

Pearson correlation coe$cient on the log}log
transform is statistically signi"cant (r"
!0.2688). The latter statistic should be trusted
more; each variable follows a nearly lognormal
distribution. As further evidence, the Spearman
rank coe$cient of correlation between n

i
and k is

also statistically signi"cant (r"!0.2644) We
have tested signi"cance using the fact that
DrDJ(n!2)/(1!r2) follows a Student's t distri-
bution.

We emphasize, however, that statistical signi"-
cance here by no means implies biological or
practical importance. On the contrary, the
negative correlation between abundance and ag-
gregation is extremely slight. The statistical sig-
ni"cance arises only out of the large number of
data points. In fact, the correlation coe$cient
reveals that only r2, or less than 7% of the
variation in k may be predicted from the abund-
ance n

i
.

If, however, we include all species with n
i
'5,

we "nd a somewhat stronger negative correlation
between abundance and k (Pearson r"
!0.4792), suggesting that rarer species are more
aggregated. This trend is very likely a statistical
artifact, and we cannot be con"dent that it has
much biological signi"cance. Even when trees are
placed at random, the k statistic becomes large
when n

i
is small. In other words, the k statistic

su!ers from autocorrelation problems when n
i
is

small (Fig. 8). When considering all species with
n
i
'5, the alternative statistic k!k

max
yields an

insigni"cant Spearman coe$cient (r"!0.0677),
suggesting that aggregation is not correlated with
abundance after all. The experiment in Fig. 9



FIG. 8. Graph of abundance versus the maximum (upper
) ) ) ) )), mean () ) ) )), and median (lower ) ) ) ) ) )) k-statistic ob-
tained over 19 Monte-Carlo trials of spatial randomness.
Even when trees are located randomly, k automatically
becomes large for small n

i
. Hence, the k statistic alone is

a poor choice for comparing aggregation with abundance.

FIG. 9. The results of an experiment which tests the biolo-
gical impact of abundance on aggregation. We graph the
SAR generated by the Poisson cluster model of Pasoh (as in
Fig. 6), as well as the SAR generated by the cluster model
whose aggregation parameters (o

i
,p

i
) have each been as-

signed to a randomly chosen abundance n
j
. The resulting

species}area curves are almost identical, and they both agree
with the actual SAR at Pasoh. In other words, randomly
shu%ing the abundances of the species does not e!ect the
SAR. The same phenomenon also occurs at HKK and
Lambir (not shown). Hence, abundance and aggregation are
conclusively uncorrelated insofar as the species}area curve
is concerned. Before shu%ing (*), after shu%ing (} } }).
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should help to resolve this statistical quandary in
a practical way.

Aside from overall aggregation (k), we may
investigate the more speci"c issues of abundance
correlation with clump density (o) or with clump
size (p). In fact, given autocorrelation di$culties
with the k-statistic, a comparison between n
i
and

o
i
may be more useful. Among the 534 species at

Pasoh classi"ed as clumped (k'k
max

) with
n
i
'50, there is no statistically signi"cant cor-

relation between abundance and o (Spearman
rank correlation r"!0.0057). This gives further
evidence that the negative correlation between
abundance and aggregation tendency (k) is prob-
ably spurious.

We also "nd a slight negative correlation be-
tween abundance and p (Spearman rank correla-
tion r"!0.1152)*suggesting, if anything, that
rare species are less tightly clumped than com-
mon species.

Given our results about o, p, and k!k
max

, we
believe that the observed correlation between
k and abundance re#ects a statistical artifact
more than a biological reality. This claim may
con#ict somewhat with analyses of Hubbell
(1979) or recent, extensive analyses of Condit et
al. (2000). The biological importance of the cor-
relation may be tested*insofar as the spe-
cies}area curve is concerned*in a revealing,
practical manner. Recall that three parameters,
n
i
, o

i
, and p

i
, determine the distribution pattern

of a species in the Poisson cluster process. As an
experiment, we may assign the previously mea-
sured parameters (o

i
, p

i
) to the abundance of

a randomly chosen species, n
j
. In other words, we

randomly shu%e the abundances of the species,
and re-run the cluster simulation. This has the
e!ect of removing whatever correlation may have
existed between abundance and cluster parameters.
For all three plots, upon randomly shu%ing abund-
ances the resulting SAR of the cluster model is
almost identical to the SAR with non-shu%ed
abundances (Fig. 9). This somewhat surprising re-
sult re#ects the fact that abundance was not strong-
ly correlated with aggregation to start with.

Although we originally "t parameters (o
i
, p

i
)

to each species i, our model produces the correct
SAR even if we randomly draw each species'
parameters from the distribution of the "tted
parameters (Fig. 9). This result should allow us to
predict an SAR fairly well without detailed
knowledge of best-"t, species-by-species para-
meters. For example, if we use the abundances of
Pasoh and draw aggregation parameters ran-
domly from the distribution of parameters "t for
Lambir, we nevertheless obtain a fairly accurate
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model of the Pasoh species}area curve. In other
words, only the distribution of aggregation para-
meters matters, and the distributions at Lambir
and Pasoh are fairly similar.

Environment and Aggregation: Heirarchial
Clumping

Thus far we have modeled clumping on a local
scale. The cluster model loosely mimics local
aggregation patterns. Although aggregation at
this scale alone has been demonstrated to deter-
mine the SAR (insofar as 50-ha data sets may
verify), larger-scale aggregation driven by habitat
certainly occurs as well. In this section, we inves-
tigate the extent and importance of environ-
mentally driven aggregation. We are particularly
interested in the possibility of hierarchical ag-
gregation in which the local patches are themsel-
ves clustered following a more global pattern. We
will employ our Poisson cluster model in order to
factor out local clumping, and thereby properly
examine larger-scale patterns.

Topography, soil di!erentiation, water stress,
etc. are all examples of environmental factors
FIG. 10. A schematic diagram depicting our subjective de"n
the hill''. The example species Barringtonia macrostachya in
topographic contour (b). Altitudes above the cut-o! are de"ned
subdivide the plot. Boxes with a circle are de"ned to be on the h
37% of the 50-ha plot. Barringtonia macrostachya has 88% of
which we suspect in#uence spatial patterns at
scales larger than mean dispersal distance and
gap size (cf. Hubbell & Foster, 1983). In addition,
there is certainly an undersurge of abiotic in-
#uences on all spatial scales. We demonstrate an
analysis of heirarchial clumping driven by top-
ography at the Pasoh forest. As with local ag-
gregation, we follow a simple, "rst-cut approach.
In particular, we focus on the main topographic
gradient found at Pasoh: the single hill within the
plot.

In particular, we divide the Pasoh 50-ha plot
into two habitats called simply &&on the hill'' and
&&o! the hill''. Our methods easily generalize to
multiple environments*such as in a valley, on
the slope, on a plateau, on humult soils, in old-
growth forest, etc. Subdividing the plot into 800
squares each 25]25 m large, we de"ne each
square as either on the hill or o! the hill. This
subjective process relies only on the topographic
contour lines (Fig. 10). According to our (subjec-
tive) de"nition, the &&hill'' at Pasoh accounts for
37% of plot's total area; 36% of all stems in the
plot are on the hill.
ition of the two environments at Pasoh: &&on the hill'' and &&o!
(a) is used as a general guide by which we select a cut-o!
as on the hill. (c) illustrates the 25]25 m boxes into which we
ill, and the other boxes o!. As de"ned, the hill occupies about
its stems o! the hill.



TABLE 2
¹he proportion of all 817 species which are classi-
,ed as hill-correlated (leftmost column)

All Species Species
species with n

i
'50 with n

i
'50,

n
clumps

'3

C!test
random-model 511 (62.5%) 423 (79.2%) 361 (79.2%)

C!test
cluster-model 241 (29.5%) 212 (39.7%) 183 (40.1%)

Results are given for the C test with random-placement Monte-
Carlo simulations (equivalent to a s2 test) and for the C test with
cluster-placement. Both tests were performed at the 5% signi"cance
level. Species by species, the latter test indicates whether or not the
clusters of trees are themselves clustered on (or o!) the hill. The
cluster test reveals that, by taking account of local aggregation,
topography in#uences the geographic range of nearly half as many
species as suggested by a naive s2-analysis. The same result holds
among the 534 species with '50 stems (middle column) or among
the 456 species with '50 stems and '3 clumps (rightmost
column).
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RANDOM-PLACEMENT TESTS OF TOPOGRAPHIC

CORRELATION

Given a speci"cation of the two habitats,
a straightforward analysis of aggregation driven
by topography would proceed via a s2 test (cf.
Basnet, 1992). For each species, the s2 test deter-
mines if an extraordinary number of trees are on
(or o!) the hill, assuming that tree locations are
independent of one another. As we have demon-
strated already, the independence assumption is
certainly violated by most species. Therefore, we
will design a slightly more sophisticated method
which accounts for local aggregation. Our
method o!ers an alternative to the elegant,
torus-randomization method of Harms (1997);
Harms randomizes the locations of the habitats,
while we randomize the locations of the trees. In
preparation for our more sophisticated test, we
begin by re-formulating the s2 test in a Monte-
Carlo setting. For a given arrangement of trees
(of a particular species i) in the plot, we de"ne

C"proportion of trees on the hill"
1
n
i

(number of trees on the hill). (11)

In order to test if the observed arrangement of
species i is signi"cantly hill-correlated (positively
or negatively), we perform 1000 Monte-Carlo
simulations. For each simulation, we place
n
i
trees of species i in the plot randomly, and we

measure C. If the true, observed value of C falls in
either the top 2.5% or bottom 2.5% tail of the
simulations, we can reject the null hypothesis of
no correlation at the 5% con"dence level.

The C test with random-placement Monte-
Carlo simulations is absolutely equivalent to the
standard s2 test. As veri"cation, 1000 simulations
reveal that the two methods di!er on (1% of
the species. The s2 test indicates that roughly
two-thirds of all species at Pasoh are hill-corre-
lated (Table 2). Figure 11 illustrates the six most
hill-correlated species (positively or negatively) as
ranked by their s2 value.

Figure 11 illustrates that the topography at
Pasoh can have a strong e!ect on spatial pattern-
ing. Nevertheless, one of the species shown in
Fig. 11, Pentace strychnoidea, despite its extreme-
ly high s2 value, would likely not meet our intu-
itive notion of topographic speci"city. Pentace
strychnoidea is an extremely clumped species (in
fact, it has the highest aggregation index in Fig.
4), and it is unclear whether its association with
the hill is driven by environment per se. Perhaps,
instead, this species is found only on the hill
because its single, tight, dispersal-driven clump
happens by chance to lie on the hill. The
s2 test*or, equivalently, the C test with ran-
dom-placement simulations*cannot distinguish
between these two possibilities. Many species at
Pasoh follow patterns similar to P. strychnoidea.
We desire a new test to disentangle aggregation
on di!erent scales.

A CLUSTER-BASED TEST OF TOPOGRAPHIC

CORRELATION

Fortunately, we can adjust our C test so as to
take advantage of our knowledge of local ag-
gregation. Instead of using random-placement
for our Monte-Carlo simulations, we may use the
Poisson cluster process with the best-"t para-
meters for each species. In essence, the C test with
cluster-based Monte-Carlo simulations will de-
termine whether or not an extraordinary number
of clumps of each species are on (or o!) the hill.
For each species, the improved C test provides
a viewpoint which is more coarse then the indi-



FIG. 11. Spatial maps of the six most topographically driven species at Pasoh, as indicated by their s2 scores. Three of the
species are positively correlated with the hill, and three negatively. Even though the s2 test ranks Pentace strychnoidea as
strongly correlated with the hill, it seems plausible that the single, tight, clump of this species lies on the hill by chance, as
opposed to genuine topographic speci"city. This example highlights the need for a more sophisticated test than the
s2 analysis.
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vidual level*and the level of coarseness is con-
trolled by the cluster parameters (o

i
, p

i
). (For

those species for which we estimated very many
clumps or very large clump radius, the cluster-C
test still operates on an individual level.) For
signi"cantly clumped species, the C test with clus-
ter-based simulations will detect the extent to
which the clumps are themselves aggregated on
the hill, i.e. a test of hierarchical clumping (Table 2).

The cluster-based C test reveals that about
one-half of the species classi"ed as on or o! the
hill by the s2 test are not, in fact, signi"cantly
hill-correlated. In other words, by taking account
of their local-clumping properties, only half as



FIG. 12. Three examples of species classi"ed as hill-correlated by the s2 test, but uncorrelated by the cluster-based C test.
These species do not show an extraordinary number of clumps either on or o! the hill (although they do have an
extraordinary number of individuals on or o! the hill). In other words, insofar as may be inferred from our 50-ha data set, the
cluster-based C test indicates that small-scale dispersion/recruitment constricts the geographic ranges of these three species,
but topography does not.
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many species are actually guided by topography
per se as compared to the naive estimate. This
would suggest that adaptation to topography
limits the placement of individuals less severely
than dispersal, gap recruitment, and other local
factors. For instance, at the 5% level, we have
seen that 83% of species show dispersion-scale
aggregation, while only 30% show true topo-
graphic aggregation.

We may have con"dence that the cluster-model
C test performs its stated task well. Figure 12
illustrates three example species for which the
naive s2 analysis concludes hill-correlation, but
for which the modi"ed C test indicates no cor-
relation. In these examples, by broadening our
focus to the cluster level (instead of the individual
level), we do not "nd a disproportionate amount
of hill-correlation. In particular, as desired, the
cluster-based C test indicates that Pentace strych-
noidea is not signi"cantly correlated with the hill.
There are no species which the s2 test "nds un-
correlated but which the C test indicates are
correlated; the cluster-based test is uniformally
more conservative. Finally, among those species
which the cluster-based C test classi"es as hill-
correlated, there is no signi"cant disparity be-
tween the number positively (116) and negatively
(125) correlated. The Pasoh species have appar-
ently adapted to "ll both ecological niches
equally well.

We conclude this section with some general
observations and provisos about the cluster-
based C test. Although we have used it to test
topography, the C test can be used to disentangle
local clumping from*and therefore query the
strength of*any environmental factor which op-
erates on scales larger than 50}100 m. Neverthe-
less, one should be aware that the C test is in-
herently conservative. As a null hypothesis we
assume that habitat has no e!ect on the spatial
arrangement; hence, if a species fails the C test, we
cannot soundly conclude that habitat has no
e!ect, but rather that our particular test did not
discover an e!ect. In this sense, the results re-
ported in Table 2 are conservative lower bounds.
For example, when properly interpreted, Table
2 indicates that at least 30% of the species in
Pasoh are driven by topography, but possibly
more. Furthermore, the Poisson cluster model
used in the C test assumes that the abundance of
each species is known. These abundances*and,
in particular, the total species richness of the
plot*are certainly determined to a large extent
by the diversity of habitats in the plot. Hence, the
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results of the C test should not be interpreted as
evidence against the importance of environmental
determinants overall, but rather as evidence
against the speci"c, relative strength of topogra-
phy versus local factors as determinants of spatial
patterning within our particular 50-ha plot.

Discussion and Conclusions

We have modeled local clumping via a Poisson
cluster process. Fitting the proper parameters of
this model to each of three tropical forests has
yielded signi"cant results on a few fronts.

First, the cluster model characterizes the spe-
cies}area curve with extremely high "delity. The
model can be viewed as a completion of Cole-
man's, zeroth-order random-placement model.
This result highlights those biological factors
which are su$cient*and which are unnecessary
*to determine the species}area curve. The fact
that the cluster parameters can be shu%ed be-
tween the species (or transplanted from one forest
to another) without a!ecting the SAR suggests
that the species}area curve may be a somewhat
insensitive indicator of community structure.

Second, the best-"t parameters of each species
allow us to address possible correlates between
biological factors (such as abundance) and clump
density or clump size. In the future, one may and
should use these parameters to look for spatial
patterns correlated with genus, functional
groups, dispersal syndrome, and other biological
factors.

Finally, the cluster model*which character-
izes clumping at the dispersion distance/gap size
scale*may be used to investigate the heirarchi-
cal e!ects of habitat on aggregation. This method
applies to those environmental factors which op-
erate on scales larger then dispersion. In particu-
lar, we have used the cluster model to ask if,
within each species, the clusters of trees are them-
selves aggregated following a topographic gradi-
ent. Once parameterized the cluster model allows
us to factor out small-scale clumping, and to
investigate accurately aggregation driven by
large-scale topography. We conclude quantitat-
ively that, within the 50-ha plot at Pasoh, top-
ography determines the geographic range of
a species less often than small-scale factors such
as dispersion and gap recruitment.
Despite the merits of the Poisson cluster
model, we must mention some of its severe draw-
backs. Foremost, the model is phenomenological.
It does not provide a dynamic understanding of
the processes which form the spatial patterns.
Instead, the model is simply a static, retroactive
characterization of spatial patterns. Indeed, esti-
mating the parameters of the model required
detailed knowledge of all tree locations. Thus, the
cluster model does not provide a predictive the-
ory. Instead, the cluster model is useful as a tool
for assessing the e!ects and causes of aggrega-
tion, for comparing aggregation parameters
across plots, and for investigating biological cor-
relates to aggregation.

We conclude by recalling one of the early in-
vestigations into spatial aggregation in a large
tropical forest plot. In 1983, before the "rst cen-
sus at BCI was even complete, Hubbell and
Foster categorized the signi"cant spatial patterns
into three disjoint groups (direct quote, Hubbell
& Foster, 1983):

(i) Species which appear to be randomly or
near-randomly distributed over the plot.

(ii) Species which are clumped and whose
patches follow easily recognized topo-
graphic features of the plot.

(iii) Species which are clumped but whose
patches are spatially uncorrelated with
topography.

At the time, a limited number of species in the
BCI canopy were identi"ed according to these
categories, relying mainly upon intuition and vis-
ual inspection. We believe that the three catego-
ries above, even though they were identi"ed in
the BCI canopy, remain the most descriptive,
qualitative characterization of the major spatial
patterns in tropical forests. The rich theory of
stochastic point processes, however, now allows
us to approach these categories more quantitat-
ively. The Poisson cluster model and the C
test provide a rigorous, systematic method for
categorizing each species according to Hubbell's
original delineations.
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