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This paper places models of language evolution within the framework of information theory.
We study how signals become associated with meaning. If there is a probability of mistaking
signals for each other, then evolution leads to an error limit: increasing the number of signals
does not increase the fitness of a language beyond a certain limit. This error limit can be
overcome by word formation: a linear increase of the word length leads to an exponential
increase of the maximum fitness. We develop a general model of word formation and
demonstrate the connection between the error limit and Shannon’s noisy coding theorem.

1. Introduction

If we want to understand the evolution of
primitive communication, then we should first
consider how signals acquire specific meanings.
In other words, we should explore how evolution
can lead to an association between signals and
objects of the world. Here “object” is used in
a very broad sense to include everything which
can be referred to.

In previous papers, we have used evolutionary
game theory to study this question (Nowak
& Krakauer, 1999; Nowak et al., 1999a). We have
assumed that communication is of benefit to both
speaker and listener. Correct communication
leads to a payoff. Each individual is characterized
by two matrices. The active matrix contains the
probabilities that a speaker will use a certain
signal when attempting to communicate about
a certain object. The passive matrix contains the
probabilities that a listener will associate a speci-
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fic signal with a specific object. If there is a possi-
bility of mistaking signals for each other then we
obtain an error limit. Using more and more sig-
nals cannot increase the fitness of a language
beyond a certain limit. In other words, natural
selection will design a communication system
that has only a small number of signals referring
to a few important concepts. It seems that this is
the case for animal communication, while human
language is (almost) unlimited.

The mechanism that can overcome the error
limit is word formation. We find that linearly
increasing word length can lead to exponentially
increasing maximum fitness (Nowak et al.,
1999b). The evolution of word formation is a
transition from an analog to a digital commun-
ication system. All human languages use a lim-
ited number of phonemes to generate a large
number of words. Moreover, word formation
is probably unique to human communication
(Pinker, 1995; Miller, 1991). Bird song is certainly
combinatorial as well, but the interpretation
of bird song is most likely not combinatorial
(Marler, 1970; Hauser, 1996).

© 2000 Academic Press
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An important feature which has been missing
from previous investigations is the connection
between language evolution and information the-
ory as conceived by Shannon & Weaver (1949).
We build this bridge in the present paper. We will
develop a more realistic model of word formation
and discuss how the payoff in our evolutionary
language game is related to Shannon’s error
probability and to the capacity of a channel.
Specifically, we show the relationship between
Shannon’s noisy coding theorem and our finding
that word formation can overcome the error
limit.

Information theory is a mathematical disci-
pline devoted to a precise definition and under-
standing of “information” in the vernacular
sense. Following the seminal works of Shannon,
information theorists have used notions from
probability theory to define uncertainty and in-
formation. Information theory addresses such
questions as the maximum rate at which informa-
tion can be transfered over a noisy (or imperfect)
channel. In particular, a coding system (e.g. re-
peating each message five times) may be used to
increase the fidelity of a noisy channel. Shannon’s
noisy coding theorem quantifies the benefits
which coding systems may confer on an other-
wise noisy communication channel.

Although information theory has been widely
applied in today’s “information age”, it has
seldom been used—nor was it conceived—in the
setting of language evolution. Despite this fact,
we shall see that Shannon’s formalism provides
an excellent framework for considering language
evolution, and especially word formation. In fact,
when properly placed in this framework, the the-
ory of language evolution should benefit from the
insights of information theorists over the past 50
years.

This paper contains seven sections. In Section
2, we will outline the basic model of language
evolution. In Section 3, we present a new ap-
proach for describing word formation. In Section
4, some basic concepts of information theory are
discussed. In Section 5, we compare these con-
cepts of information theory, in particular Shan-
non’s noisy coding theorem, with our model of
word formation. In Section 6, we present a speci-
fic example of a very simple communication
system and analyse it from the perspective of

language evolution and information theory.
Section 7 is a short conclusion.

2. Evolving Arbitrary Signals

Consider a population of individuals who can
communicate via signals. Signals may include
gestures, facial expressions, or spoken sounds.
We are interested how an arbitrary association
between signals and “objects” can evolve.

In the most simple model, each individual is
described by an active matrix, P, and a passive
matrix Q (Hurford et al., 1998). The entry
P;; denotes that the probability that the indi-
vidual, as a speaker, will refer to object i by using
signal j. The entry Qj; denotes the probability
that the individual, as a listener, will interpret
signal j as referring to object i. Both P and Q are
stochastic matrices; their entries lie in [0, 1], and
their rows each sum to one. The “language” of an
individual, L = (P, Q), is defined by these two
matrices.

When one individual using L = (P, Q) com-
municates with another individual using L'=
(P, Q'), we define the payoff as the number of
objects communicable between the individuals,
weighted by their probability of correct commun-
ication. Thus, the payoff of L vs. L’ is given by
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There are n objects and m signals. Loosely speak-
ing, this payoff function reflects the total amount
of information that L can convey to L', and vice
versa. In this basic model, any possible miscom-
munication results from a discrepancy between
the signal-object associations of the speaker and
the listener. The maximum possible payoff to two
individuals who share a common language is the
smaller of n or m.

2.1. TRANSMISSION ERROR

Miscommunication can arise from errors that
occur during the transmission of a signal. Such
“transmission errors” can be described by a sig-
nal-error matrix U. The entry U;; denotes the
probability that, when a speaker sends signal i,
the listener receives signal j. In this setting,
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assuming that two individuals share a common
language L = (P, Q), the payoff is defined by

Z Z Pij[]ijki' (1)

i=1j=1k=1

M =

F(L, L) =

Again, this payoff function reflects the sum of the
information content which a speaker can convey
accurately to a listener and vice versa.

2.2. THE ERROR LIMIT

Let us now calculate the maximum payoff that
a language, L, can achieve. Suppose n = m. The
maximum payoff will be obtained if P and Q are
identical permutation matrices. (A permutation
matrix has a single 1 entry per row and column,
all other entries being 0.) Without loss of general-
ity, we set P; = Q;; =1foralli,and P;; = Q;; =0
for all i #j. In this case, we obtain the payoff
function

F(L,L)= i Usk-

The signal-error matrix, U, can be constructed
to reflect the similarities of the signals. In particu-
lar, we denote the similarity between signal i and
signal j by s;;. We stipulate that s; =1 and
s;j < 1. The probability of mistaking signal i for
signal j quantifies how similar signal i is to j com-
pared with all other signals: u;; = s;;/Y s~ s In
these terms, the fitness of a common language
can be expressed as

F(L,L)zi !

i=1 Zzzﬁik'

We imagine that the signals of the language are
embedded in some pre-compact metric space, X,
and that d;; denotes the distance between signals
i and j. The similarity between two signals, then,
is a decreasing function of the distance s;; = f (d;;).
It can be shown that in this situation the fitness is
always bounded by some constant depending
only on X and f, but not on n (Dress & Nowak,
2000). In other words, even as the signal reper-
toire of a language increases, the fitness cannot
exceed a fixed value.

3. Word Formation

In Nowak et al. (1999b), we demonstrated that
word formation can overcome the constraint of
the error limit. We considered languages whose
basic signals consist of m phonemes. The words of
the language were all assumed to be I-phonemes
long. For simplicity, we also assumed that a lan-
guage includes all possible m' words in its lexicon.
The similarity between words « and f was de-
fined by the product of the similarity of their
phonemes. In other words,

1
S(a, f) = l_[ ANCPIEN
k=1

where o® denotes the k-th phoneme of word .
Using this definition, we showed that the maximum
fitness of the language increases exponentially
with word length . In this sense, word formation
allows the language to overcome the error limit.

We now develop a more general framework for
word-based language. A language will be de-
scribed by four components: a lexicon, an active
matrix P, a passive matrix Q, and a phoneme
error-matrix V.

As before, our model is based upon words
which are [-phonemes long. The lexicon of the
language, however, does not necessarily include
all possible m' words. Instead, the lexicon con-
tains a subset of all possible words. Specifically,
let us denote the phonemes of the language by the
set @ = {¢{, ..., ¢, }. We denote the lexicon by
some subset € = @' We refer to the words in
€ as the lexicon or proper vocabulary of the lan-
guage. Let us denote the size of the lexicon by
n=|€| (ie. n is the cardinality of the set €).
Notice that n also denotes the number of objects
expressible in the language.

The active matrix P defines the (probabilistic)
association between objects and words for the
speaker. P is now an nxm' stochastic matrix
whose ij-th entry denotes the probability that
a speaker will attempt to use word j to denote
object i. By definition, non-zero entries in P may
occur only at columns corresponding to words in
the lexicon €.

The passive matrix Q maps all possible
perceived words (probabilistically) back into the
n objects. We specify the passive matrix via
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a stochastic m' x n matrix Q. The entry Q; repres-
ents the probability that a listener who perceives
the j-th word will interpret it as the i-th object.

Finally, we must provide a description of
transmission errors. As before, we use an m' x m'
word error-matrix U. The entry U;; denotes the
probability that, when a speaker attempts to vo-
calize the i-th word, the listener perceives the j-th
word. Notice that only the rows of U correspond-
ing to lexicon words matter; we have assumed
that a speaker will never attempt to vocalize an
improper vocabulary word (although a speaker
may, in fact, utter a word outside of the lexicon
via a transmission error).

In strict analogy with previous models, the U-
matrix is built upon the similarity between the
phonemes of which the words are comprised. In
particular, we start with a stochastic m x m pho-
neme error-matrix V. The entry V;; denote the
probability that, when a speaker attempts to vo-
calize the i-th phoneme, the listener hears the j-th
phoneme. Therefore, as before, for words o and f,
we have the following expression for the word
error-matrix (notice that, since V 1is stochastic,
U is as well):

l

l_[ k}ﬁ(k)

Thus, a language L is described completely by
the three matrices L = (P, Q, V). The matrix U is
derived from V, and € is determined by those
columns of P-containing non-zero entries. Fi-
nally, we stipulate that all individuals in a popu-
lation share the same V-matrix. In other words,
all individuals use the same phonemic alphabet,
and they share the same imperfections in their
vocal and auditory organs.

In this setting, the proper payoff function (in
strict analogy with previous models) is given by
the sum of the number of objects which speaker
L can convey to speaker L’, weighted by the
probability of communicating the objects cor-
rectly. In other words, letting w; denote the i-th
object, we define

F(L,L) = Y P, U0,
/16(1)
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We now ask what is the maximum possible
fitness a language can obtain. Of course, the
maximum is obtained when the speaker and lis-
tener share a common language given by binary
active and passive matrices. But we do not yet
know, given P and V, what is the optimal listen-
ing matrix Q.

Moreover, there remains another issue to be
addressed: is it possible, by increasing the word
length [, to increase a language’s payoff without
bound? In light of the error limit, this inquiry
addresses a fundamental question regarding the
adaptive benefits of word formation.

In order to answer these questions, we will first
take a detour into the information theory of
Shannon. We will use Shannon’s classical the-
orem on noisy communication to show that word
formation does, indeed, remove the error limit
which constrains strictly phonemic communica-
tion. In fact, as we shall see, word formation
provides an exponential increase in fitness with
word length [. This result places our evolutionary
theory of language within the larger framework
of information theory.

4. Shannon’s Information Theory

We will outline some of the primary compo-
nents of Shannon’s theory as needed for our
purposes. For a detailed accounts of information
theory, we refer to Welsh (1988) and van der
Lubbe (1988).

4.1. THE NOISY CHANNEL

Shannon considers a discrete memoryless
source 3 which emits characters from an alphabet
¢ ={¢p,,..., ¢, according to some discrete
probability distribution. Most often, Shannon
considers the special case of a binary alphabet,
but his noisy coding theorem applies to arbitrary
alphabets as well. The discrete source J is linked
to a noisy channel used to transmit information.
The channel is summarized by a channel matrix
V. The entry V; gives the conditional probability
Pr(¢; received| ¢; sent).

Given a channel V' and an input source, we
obtain a natural output stream. In this situation,
Shannon introduces the notion of the capacity
of V. The capacity C(V)e [0, 1] measures the
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maximum rate at which information about an
input stream may be inferred by inspecting the
output stream. (A more precise definition will be
given in Section 6.) Given a channel V' with capa-
city C(V), Shannon asks how one can improve the
reliability of the communication system by con-
structing codes while simultaneously keeping the
required number of transmissions small.

4.2. ENCODING AND DECODING

In order to increase fidelity, Shannon defines
a set of n codewords, €, each codeword being
a string of [ characters from ®. The encoder takes
input messages from the source J, encodes the
information into codewords, and sends the code-
word on to the noisy channel, letter by letter.
Shannon also requires the specification of a de-
terministic decoder. The decoder is a map from all
possible outputs (from the noisy channel) back to
€. In other words, the decoder is a partition of @'
into n disjoint subsets. (Of course, any good de-
coder will certainly include each codeword
w within the subset of @' which is decoded as w.)

Shannon defines the error probability of this
communication system (Fig. 1) as

n
e(C) = . Y Pr(error in communication |
i=1
codeword w; is transmitted).

Thus, the error probability measures the average
number of mis-interpreted codewords, assuming
codewords are transmitted with equal probabilit-
ies. Clearly, one would like to construct codes

Source

i

Encoder

Noisy
channel
 J

Decoder

FI1G. 1. Schematic diagram of Shannon’s communication
system. A source emits messages which are encoded into
codewords, transmitted over a noisy channel, and then
decoded.

with error probability as small as possible. This is
precisely the problem which Shannon’s funda-
mental theorem addresses.

4.3. THE NOISY CODING THEOREM

In this situation, Shannon’s noisy coding
theorem states the following:

Theorem 4.1 (Shannon, 1948). If a discrete mem-
oryless channel V has capacity C > 0 and R is any
positive quantity with R < C, then there exists
a sequence of codes (€,|1 < n < o) such that

(a) €, has 2L%") codewords of length | = n,

(b) the error probability satisfies e(€,) < Ae™ 5",
where the constants A and B depend only on the
channel V and on R.

In other words, Shannon’s theorem provides
a sequence of communication systems with lin-
early increasing codeword length, exponentially
increasing number of codewords (and thus de-
scribable objects), and exponentially decreasing
error probability. [For a proof of Shannon’s the-
orem, we refer the reader to Gallager (1968). In
essence, Shannon constructs each successive code
¢, by choosing random codewords and decoding
via the maximum likelihood method.]

Shannon’s coding theorem provides us with
exponentially good codes. There is, however, an
important converse to this theorem. The con-
verse tells us that we could hope for nothing
better. Specifically, we have the following result.

Theorem 4.2 (Wolfowitz, 1961). For a discrete
memoryless channel of capacity C and for any
R > C, there cannot exist a sequence of codes €,
such that €, has 28" codewords of length n and
error probability tending to zero. In fact, such
a sequence of codes must have error probability
which approaches 1 as n — oo.

5. Information Theory and Word-based
Language

In this section, we reinterpret Shannon’s com-
munication system and the noisy coding theorem
in terms of our language model.

In order to relate Shannon’s theory to our
language model, we make two trivial remarks.
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Notice first that a Shannon-encoder may be ex-
pressed as a binary n x m' matrix P whose rows
sum to one. The entry P;; indicates whether or
not the encoder uses word j to denote object
(or message) i. Similarly the decoder may be
expressed as a binary m' x n matrix Q. The entry
Q;; denotes whether or not the j-th word is in-
cluded in the subset words decoded as the i-th
codeword (or i-th message).

In this setting, Shannon’s codeword commun-
ication through a noisy channel is easily seen to be
equivalent to our model for language. Shannon’s
alphabet @ plays the role of the phonemes, the
encoder plays the role of the active matrix, and the
decoder the passive matrix. Shannon’s “code-
words” are simply strings of phonemes. Similarly,
the noisy channel V' plays the role of the phoneme
error matrix. Shannon’s communication system is
always deterministic; however, it requires that the
matrices P and Q are binary. Notice that, when
P is binary, there is an unambiguous one-to-one
correspondence between lexicon words and ob-
jects. In this situation, the “objects” expressible in
our original language model may be identified
with Shannon’s codewords.

In light of the equivalence of these two systems,
it is important to relate the information-theoretic
definition of error probability—whose behavior is
described by Shannon’s theorem and its converse—
with our definition of language fitness. Such a rela-
tion will allow us to use Theorem 4.1 to derive the

i=1aecd

maximal fitness of our word-based model.
Towards this end, consider the information-the-
oretic expression F(€) =|€|(1—e(€)) =n(1 —e(C)).
By Shannon’s theorem, given a channel V' with
non-zero capacity, we can find a sequence of
codes €, with linearly increasing codeword
length and with exponentially increasing F ().

Thus, Shannon’s theorem (together with its con-
verse) reveals the maximal properties of F(€).

We will show that F(€) is equivalent to the
fitness of language in our evolutionary model.
Thus, we claim

F(€) =F(L, L).

The proof of this statement is little more than an
exercise in unraveling definitions. We start with
the definition of F:

F(€) =n[1 — e(€)]

n
=n [1 —— Y Pr(communication error |
n.

i=1

w; transmitted)}

n

=n— ) (1—Pr(no communication error
i=1

w; transmitted))

n

= Y Pr(no communication error|
i=1

w; transmitted).

Recall that in Shannon’s codeword system,
P and Q are binary matrices whose rows sum to
1. Therefore, given we€, P,, =1 only when
o = w. Thus, we may rewrite the last equality
above as follows:

F© =Y Y P,,Pr(no communication error|a transmitted).

In order to calculate the probability of correct
communication when o is transmitted, we con-
sider all possible outputs f from the noisy chan-
nel, weighted by their respective probabilities.
For each output f, correct communication oc-
curs only if f is decoded as codeword w;. Thus,
we derive the equations

P,. Y. Pr(p received|o transmitted)Pr(f is decoded as codeword w;)
@ ped

=) P,. Y. Pr(p received|o transmitted)Qp,,.

i=1oed ﬁe(Dl
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Finally, we must calculate the probability that,
upon input « into the noisy channel, we receive
output f. The noisy channel produces its output
phoneme-by-phoneme (or “letter by letter”).
Therefore, the probability we want equals the
product of the probabilities that each phoneme of
o will be transmitted as the respective phoneme of
fp. Such quantities are given by the channel
matrix V. Thus, we see that

n 1
F(G) = Z Z Pw,«a Z Q,;wi 1_[ V;gk)/,(k).
k=1

i=1aed ﬁefl)l

But this last formula coincides with our expres-
sion for the language fitness F(L, L), defined in
eqn (2). Hence, we have shown F(€) = F(L, L).

Therefore, if all the individuals in a population
use the same language, and if that language has
binary P- and Q matrices, then the fitness F (L, L)
agrees with the information-theoretic quantity
F(€). As a consequence, Shannon’s coding the-
orem implies the following result.

Theorem 5.1 (word formation). Given a phoneme
error-matrix V (with non-zero capacity), there exists
a sequence of languages L, with linearly increasing
word length and exponentially increasing fitness.

Thus, word formation overcomes the error
limit which constraints strictly phonemic com-
munication; increasing word length can increase
fitness without bound. This result highlights the
importance of word formation, which is more or
less unique to the human species.

Note that this result is not limited by the re-
striction to binary active and passive matrices; as
is usual in linear programming, we know a priori
that a maximally fit language must use binary
matrices.

As we have seen, information theory helps to
answer fundamental questions about our model of
word-based language. In one sense, however, our
model is more general than Shannon’s commun-
ication system; P and Q are not necessarily deter-

aa am ap ma
Mother 0 O 0 1-—2
Food 0 0 0 ¢
Father 0 0 0 €

P:

mm mp

&

&
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ministic, and they are not necessarily shared by the
speaker and listener. This generality allows us to
view language in an evolutionary context, as we
shall explore in the following extended example.

6. A Specific Example

In order to illustrate our somewhat abstract
model of language—as well as its relationship to
information theory—we now present a specific
example. Let us assume that the individuals in
a population all speak the same language. In this
section, we will step through a complete specifica-
tion of the language L and eventually calculate
F(L, L). Then, we will reconsider the example in
light of information theory and Theorem 5.1.

6.1. THE PHONEMES

We first stipulate that the organisms in the
population are all limited, by their similar vocal
and auditory organs, to the use of three pho-
nemes. We denote these phonemes by a, m and p.
Therefore, ® = {a, m, p} and m = 3. We also as-
sume the population uses a language with word
length [ = 2. Therefore, the possible words which
an individual can utter are ®' = {aa, am, ap, ma,
mm, mp, pa, pm, pp}. Nevertheless, the popu-
lation chooses only to describe three objects: fa-
ther, mother and food. Hence, the population
uses a lexicon of n = 3 proper vocabulary words.
Specifically, we stipulate that the population uses
the lexicon € = {pa, ma,mm} < &

6.2. THE ACTIVE MATRIX

Next we describe the active matrix, P, of the
common language. We assume that, generally
speaking, a speaker attempts to use pa to convey
father, ma to convey mother and mm to
convey food. Nevertheless, the speaker does not
have a deterministic (binary) active matrix. In-
stead, there is always a slight probability that the
speaker will try to describe an object with the
“wrong” vocabulary word. This leads to the fol-
lowing expression for the P-matrix:

pa pm pp
0 € 0 O

1—-2 0 e 0 0

0 1-2 O 0
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Notice that the columns of P with non-zero
entries correspond to proper vocabulary words.
In other words, when a speaker wants to com-
municate food, there is no chance that he will
attempt to use a word outside of his language’s
lexicon. The active matrix represents the
speaker’s association between objects and proper
vocabulary words.

6.3. THE TRANSMISSION ERROR MATRICES

Despite the form of the active matrix, there is
always a chance that when trying to communic-
ate an object, the perceived output will not fall in
the lexicon. This phenomenon arises from errors
in vocalizing the intended word or hearing the
output correctly. Such a phenomenon is a trans-
mission error, as opposed to a interpretation er-
ror, and it is quantified by the word error-matrix
U.

In order to specify U, we must first define the
phoneme error-matrix V. For illustrative pur-
poses we derive V (and thus eventually U) by
using the notion of phoneme similarity. We em-
bed our phonemes into the compact metric space
X =10,1], and we define their pairwise sim-
ilarity as a declining function f of their pairwise
distances.

In particular let us embed @ — [0, 1] by plac-
ingp at 0, m at 1/4, and a at 3/4. We have chosen
this particular embedding for purely illustrative
purposes; there has been no attempt to reflect the
actual phonetics of m, p, and a in the English
language (Fig. 2).

We define phoneme similarity via a simple,
exponentially decreasing function of distance:
s;j = f(d;;) = e~ >%. For example, s,,, = ¢~ >‘am =
e 23Tl = 6752 ~0.082.  Similarly, s,, =
¢ %%a = ¢ = 1. This leads us to the following
values for phoneme similarity. (For ease of pre-
sentation, we henceforth round all reported values
to two decimal places. Nevertheless, all of our

calculations employ the precise parameter values.)

Smp = So.m 029,

.p

As in Section 3, we use the similarity between
phonemes to define the phoneme error matrix
Vij = 8ij/> k=1 Su. For example, V,, ~1/(1 4 0.08
+0.02) =0.90. This leads to the following
stochastic phoneme error matrix V:

a m p
a 090 0.07 0.02

V= m 006 0.73 0.21.

p 002 022 0.76

(Notice that, if a row of a stochastic matrix ap-
pears not to sum to one, this is only an artifact of
our two-decimal presentation.)

Although the matrix above is stochastic, it is
not symmetric. For example, given V' above, it is
more likely to mis-speak or mis-hear the pho-
neme p as m than it is to slip from m to p. Upon
a moment’s reflection, this situation is realistic;
certain phonemes lend themselves more easily to
transmission error into others than vice versa.

Using the V' matrix, we can derive the corre-
sponding word-error matrix U. For each pair of
words we compare constitutive phonemes in
turn. For example, Unaaa= Vnalaa ~0.06-
0.90 = 0.05. Of course, the only rows of U which
matter correspond to words with positive prob-
ability in P—i.e. to the lexicon words. Thus, we
only report such rows below. This leads to the
following U matrix:

aa am ap ma mm mp pa pm pp
ma 0.05 0.00 0.00 0.66 0.05 0.02 0.19 0.02 0.00

U = mm 0.00 0.04 001 004 053 0.15 0.01 0.15 0.04.
pa 0.02 000 0.00 020 0.02 0.00 0.69 0.06 0.02
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S0

X=[0,1]

FIG. 2. Schematic diagram of the embedding of pho-
nemes @ = {a, m, p} into the metric space X = [0, 1]. Once
embedded, phoneme similarity is defined by a decreasing
function of distance.

6.4. THE PASSIVE MATRIX

Finally, we must specify the passive matrix Q.
This matrix provides, for each possible perceived
output word, the probability of interpreting that
word as each respective object. For example,
Qaa.mother denotes the probability of interpreting
perceived output word aa as the object mother.
Given P and U, what is a reasonable choice of
listening matrix Q?

We will soon derive the optimal, deterministic
choice of Q. For now, however, we follow a rea-
sonable rule of interpretation: a listener should
interpret perceived output word « as object i with
a probability which equals the probability that,
when trying to communicate object i, the per-
ceived output would be «. In other words, we set
Q,.; = Pr(output «|i transmitted). For example,
we set Qaa motner €qual to the chance of producing
output aa when trying to communicate mother.
In particular, this probability is given by
(1 —28)Umaaa + €Umm.aa + €Upaaa & 0.05(1 — 2¢)
+ 0.00¢ + 0.02¢ ~ 0.05 — 0.09¢. Following this
rule alone, however, the rows of the resulting
0 matrix do not necessarily sum to one. Thus, we
normalize each row to derive the following, non-
deterministic Q-matrix:

Mother Food Father
aa 0.73—1.2¢ 0.05+0.85¢ 0.22+40.34¢
am 0.09+0.73¢ 0.89—1.65¢ 0.03+0.92¢
ap 0.09+0.73¢ 0.88—1.65¢ 0.03+40.92¢
ma 0.73—1.2¢ 0.05+0.85¢ 0.22+40.34¢

O=mm 0.0940.73¢ 0.88—1.65¢ 0.03+0.92¢
mp 0.09+0.73¢ 0.88—1.65¢ 0.03+092¢
pa 0.214+0.36¢ 0.01+096¢ 0.77—1.3¢
pm 0.07+0.79¢ 0.68—1.04¢ 0.25+0.25¢

pp 0.07+0.79¢ 0.68—1.04¢ 0.25+40.25¢.

3)

6.5. THE PAYOFF

Since the language L = (P, Q, V') has now been
completely specified, we may calculate its payoff
via eqn (2):

M=

F(L,L) =

1

Pw,fx Z Qﬂw;foﬂ

1aed /]ed’l

= Z Pmother,a Z Q,B,motherUazﬂ

wed pe @'
+ Z Prood.s Z 0p.r00dUap
ved pe !

+ Z Pfather,oz ZIQ/f,fatherUaﬁ

ve @' fed

~ 1.96 — 5.79¢ + 8.68¢>.

Having derived an expression for the fitness of
the language L, we may now inspect its proper-
ties. The only free parameter is & which is
a measure of interpretive error. (By completely
specifying V, on the other hand, we have fixed the
amount of transmission error.) We may only
allow ¢ to vary in [0,0.5] so that P remain
a stochastic matrix. Figure 3 shows the graph of
F(L, L) for this range of ¢ values.

As expected, the maximum fitness occurs when
¢ equals zero—i.e. when there are no errors in
interpretation. In general, as we usually find in
linear programming problems, the maximal fit-
ness always occurs when P and Q are binary,

I IS S PR
0.1 0.2 0.3 0.4 0.5
Interpretive error, &

F1G. 3. Graph of the language fitness F(L, L) obtained as
a function of ¢. The parameter ¢ measures the amount of
interpretive error in the language. The fitness of the lan-
guage L is maximized when there is no chance for misinter-
pretation (¢ = 0).
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deterministic matrices. Also notice that the
minimum fitness occurs when ¢ = 1/3; in this
situation each speaker has an indiscriminate
association between objects and lexicon words.

6.6. IN THE CONTEXT OF INFORMATION THEORY

We now reconsider the example in the context
of information theory. The phoneme error-
matrix ¥ now plays the role of the channel
matrix. Similarly, we use the original lexicon as
the code-words. The encoder and decoder, how-
ever, must now be binary. Therefore, in a strict,
information theoretic context, we must take
¢ = 0. In this context, we should also use deter-
ministic, maximum likelihood decoding, as in the
proof of Shannon’s theorem. Specifically, Q must
decode an output word o« as that particular
codeword i which maximizes the conditional
probability Pr(output oli transmitted). Recall
that in eqn (3) we defined Q, ; = Pr(output o|i
transmitted), and normalized each row. There-
fore, the maximum likelihood decoder simply
replaces each row of the non-deterministic Q with
zeroes, except for the largest entry in the row.
More explicitly, for each « € @', the deterministic,
maximum-likelihood decoder QM* satisfies

1 when o maximizes
ML

a, i

Pr(output «|i transmitted)

0 otherwise.
{1 when o maximizes 3 ;.4 PipUsp,

0 otherwise.
In our particular example, when ¢ = 0 we have
the following maximum-likelihood decoder Q™*:

Mother Food Father

aa 1 0 0
am 0 1 0
ap 0 1 0
o _ ma 1 0 0 @)
mm 0 1 0
mp 0 1 0
pa 0 0 1
pm 0 1 0
pp 0 1 0

(Notice, for example, that mp is decoded
a food (mm) as opposed to mother (ma). This
makes sense given that p is phonetically closer to
m than to a.)

When ¢ = 0 and when we use maximum-likeli-
hood decoding, we calculate that F(L, L) ~ 2.35.
This maximum fitness is significantly larger than
1.96, which was the fitness obtained via the non-
deterministic encoder of eqn (3). In fact, as ¢ va-
ries, we can evaluate the fitnesses obtained via the
maximum-likelihood vs. the non-deterministic
encoders. A graph of these fitnesses is shown in
Fig. 4.

Notice that it is always better (except when
¢ = 1/3) to use the Shannon-type decoder QM-
than the non-deterministic matrix defined in
eqn (3). This is a graphic illustration of the opti-
mality ensured by Shannon’s theorem.

6.7. THE CAPACITY CALCULATION

In this section, we compute the capacity of
the 3 x3 phoneme error-matrix V. Recall that
Shannon’s theorem only applies to channels with
Cc(V)>Do.

First, we must state the precise definition of
capacity. Given a channel V' and an input-source
3, we obtain a natural output stream J. The
capacity of the channel V is defined by

C(V)=sup [HES) + H(Q) — H(S, I,

24|
22 L

Fitness

M PR B NSPLas L
0.1 0.2 0.3 0.4 0.5
e-value

FIG. 4. Graph of the language fitness F(L, L) obtained
via the non-deterministic decoder Q as opposed to the deter-
ministic, maximum-likelihood decoder Q™E. A language is
always better served by the maximum-likelihood decoder.
Thus, we expect that languages should evolve towards max-
imum-likelihood decoding. (----) Shannon decoder (Q™F);
(——) non-deterministic decoder (Q).
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where H denotes the entropy of a source. The
entropy of a discrete source I with probability
distribution (py, ..., p,) is defined as H(J) =
— Y pilog(p;). See Welsh (1988) for a descrip-
tion of entropy.

In our particular example, a source 3 is deter-
mined by a discrete probability distribution
(x,y,2),x +y + z =1, where x denotes the prob-
ability that the source will emit letter a, y denotes
the probability for m, and z for p. The output
stream J is calculated as follows; the probability
of an a is xVj; + yVa1 + zV31, and similarly for
the other two letters. The stream (3, J) has nine
possible “letters”: a followed by a, a followed by
m, etc. These probabilities are given by xVi,
xVi,, etc.

Once the probability distributions for 3, J,
and (3,3) have been expressed in terms of
(x,y,z), we must maximize the function
H(3J) + H(J) — H(J3, 3) over all input distribu-
tions for 3. This maximization amounts to
nothing more than a straightforward calculus
problem via Lagrange multipliers. The resulting
answer is given by

C(V) ~ 0.7988,

which is obtained when (x,y, z) & (0.43, 0.19,
0.38).

Thus, since C(V') >0, Shannon’s theorem in-
deed applies to our explicit example. In particu-
lar, Shannon’s theorem guarantees a sequence
of languages L,, n=1,2,3,..., each with a
lexicon of 297" words of length [ =n, with
exponentially increasing fitnesses.

6.8. EVOLUTION TOWARDS DETERMINISM

We can use evolutionary dynamics to test if the
language will evolve toward deterministic passive
matrices, as information theory predicts.

We ran a simple computer simulation to test
whether, when V' and P are fixed, Q will evolve
towards QML the deterministic, maximum-likeli-
hood decoder. In particular, referring to our ex-
plicit example, we fix ¢ =0 and specify P and
V as above. We choose a population of 50
asexual, semelperous individuals. In the first
generation, each individual starts with the
non-deterministic Q-matrix from eqn (3). In each

successive generation, we calculate the payoff
obtained by each individual communicating with
every other one. Each individual then produces
progeny (each progeny with the same Q-matrix as
the parent) in proportion to its total payoff rela-
tive to the other individual’s payoffs. We nor-
malized so that there are 50 offspring, and thus 50
individuals, in every generation. At each genera-
tion and for each offspring, we stipulate a 0.4%
chance that the offspring will be a “mutant”.
A mutant offspring possesses the same Q-matrix
as its parent, but with each entry perturbed by
arandom valuein [—0.212,0.212]. (By normaliz-
ing, we ensure that a mutant’s resulting Q-matrix
has nonnegative values with rows summing to
one.)

The result of this evolutionary simulation
is summarized in Fig. 5. We have graphed
the average payoff in the population at each
of 5000 generations. The average payoff starts
at 1.96, as derived in Section 6.5. Notice that
the average payoff increases over time,
approaching the Shannon-limit of 2.35, derived
in Section 6.6.

We also report a typical Q-matrix found in the
population after 5000 generations. This Q-matrix
compares favorably with the matrix QM% of

eqn (4):

Mother Food Father
aa 1 0 0
am 0.19 0.81 0
ap 0.08 0.92 0
ma 0.99 0 0.01
05000 = MM 0 1 0
mp 0.09 0.91 0
pa 0 0 1
pm 0.13 0.77 0
pp 0 0.99 0.01

As this simulation reveals, although the evolu-
tionary dynamics of word-based language are



158 J. B. PLOTKIN AND M. A. NOWAK

Fitness

1000 2000 3000 4000 5000
Time (generations)

19t

FI1G. 5. Graph of the average payoff in a population of
individuals during the course of simulated language evolu-
tion. The population begins with non-deterministic decod-
ing and evolves towards maximum-likelihood decoding.
This evolution towards determinism is reflected by the aver-
age payoff of the population, which ascends towards the
Shannon limit of 2.35. Thus, the long-term, complex dynam-
ics of language evolution are predicted by information
theory. (----) Shannon limit; (——) simulation.

complicated and noisy, we can still understand
their long-term behavior via the bounds imposed
by information theory.

7. Conclusions

We have compared models of language evolu-
tion with concepts from information theory. In
particular, there is a connection between Shan-
non’s noisy coding theorem and our results on
word formation. Shannon’s theorem states that,
for a given noisy channel, there exists a sequence
of codes with linearly increasing codeword
length such that the probability of transmis-
sion error decreases exponentially. Our
result on word formation states that, for a given
phonemic error matrix, the maximum fitness of
a language increases exponentially with word
length. We demonstrated that Shannon’s error
probability is inversely proportional to our fit-
ness function. Hence, the equivalence becomes
obvious.

Although the maximum fitness of a language
increases with word length, evolution will not
lead to a run-away sequence of languages with
longer and longer words. Clearly, there are natu-
ral restraints on this tendency: as word length
increases, memorization difficulties increase and
the rate of communication decreases.

Shannon’s theory requires a deterministic en-
coder and decoder (equivalent to binary P and

Q matrices in our notation). Any errors thus
result from noisy transmission, which is equiva-
lent in our terms to acoustic errors during com-
munication: the sender emits signal A4, but the
receiver hears signal B. We believe that word
formation was the crucial evolutionary invention
to overcome this kind of transmission error.
Instead of increasing the number of phonemes
in a language, our ancestors invented a com-
binatorial signaling system. In this sense, word
formation compensates for errors in signal
transmission.

There are, however, other kinds of errors
which are not captured by Shannon’s basic
model. These are coordination errors between
the implementation of a signal by the sender and
the interpretation of a signal by the receiver. We
believe that these errors cannot be overcome by
word formation per se, but that they instead
require a sophisticated organization of the men-
tal lexicon and, importantly, the invention of
syntax. As the size of the mental lexicon reaches
some memory capacity it becomes feasible to
represent every message by an individual word.
Instead, sentences comprised of individual words
are required. Hence, there should be an error
limit for words which is overcome by the use
of sentences. This topic—the evolution of syn-
tax—requires further investigation (Nowak et al.,
2000).
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