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Abstract. The abundances and spatial distribution of speciesis central to biogeography
and conservation. Several theories have been offered to explain landscape-scale species
distribution patterns. The verification of biogeographic theories, as well as conservation
decisions, must be based upon empirical data gathered from necessarily restricted censuses.
It is necessary, therefore, to understand the relationship between an underlying landscape-
scale pattern and the corresponding pattern it produces upon sampling small subregions.
The similarity of species composition between two samples depends not only on the species
composition of the underlying landscape from which the samples are drawn, but also on
the underlying distribution of species abundances, the degree of conspecific spatial clus-
tering, and sample size. In this paper, we investigate how sampling expectations change
depending upon species abundance distributions and upon spatial distributions. We derive
analytical results for the expected species overlap between two sampled regions under a
wide range of conditions. We compare these results with data from a 50-ha tropical forest
census. These methodologies provide useful tools for assessing beta diversity, for testing

macro-ecological theory, and for designing landscape-scale sampling schemes.
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INTRODUCTION

Spatial patterns of species diversity are of great in-
terest to ecologists. Thisinterest isin part practical: to
best conserve biodiversity, we must know where spe-
cies richness is highest and how species assemblages
change in space (Cody 1986). But diversity patterns
are also of theoretical interest, providing material to
test theories of why diversity varies among sites and
how species turnover increases with intersite distance
(Condit et al. 2002).

Species diversity in a landscape has long been di-
vided into two parts: alpha diversity and beta diversity
(Whittaker 1960). Most studies have focused on alpha
diversity, the diversity of species within individual
sites. Yet even the most diverse sites hold but a tiny
fraction of the planet’s species. The high diversity of
species overall is due mainly to beta diversity, the
change in species composition between sites. An un-
derstanding of the mechanisms and patterns of beta
diversity is critical for understanding the local to land-
scape scaling of biodiversity in general.

Despite its obvious importance, beta diversity has
received relatively little attention in the empirical lit-
erature. Those empirical studies that have examined
species turnover across a landscape have used a variety
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of methods (not always comparable), and have focused
on qualitative patterns (e.g., Routledge 1977, Cody
1986, Harrison et al. 1992, Harrison 1997, Potts et al.
2002). Recent contributions (Chave and Leigh, in
press, Leigh et al. in press) make quantitative predic-
tions regarding the spatial turnover of species com-
position under a neutral model of community dynamics
(Hubbell 1995, 1997, 2001). Such work provides the-
oretical predictions of beta diversity patterns that can
be tested with empirical data sampled from alandscape
(Condit et al. 2002).

In order to assess landscape-scale species compo-
sition patterns with limited data, we must first under-
stand the sampling distributions of our measured sta-
tistics. That is, given some underlying species simi-
larity between two communities, what similarity do we
expect to observe between two small samples from
those communities? And thus what can we deduce
about the underlying species similarity between two
communities from the observed similarity between two
small samples? Unfortunately, this question cannot in
general be answered exactly. Previous studies have
used computer simulationsto investigate the robustness
of community similarity measuresto samplesizes(e.g.,
Morisita 1959, Ricklefs and Lau 1980, Wolda 1981).
These studies show that similarity indices computed
from small samples almost always underestimate the
true similarity of the underlying communities from
which the samples are drawn. The sampling distribu-
tion of similarity indices is so fundamental to bioge-
ography that numerical approximations fitted to com-
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puter simulations (Wolda 1981) have even been incor-
porated into popular textbooks on ecological method-
ology (Krebs 1999).

Previous studies of similarity indices assume that
individuals are all sampled independently and ran-
domly in space. For many types of communities and
sampling practices this assumption is severely vio-
lated. For example, studies of contiguous plots in
tropical tree communities reveal that nearly every
species is spatially aggregated (He et al. 1997, Con-
dit et al. 2000), and that this aggregation significantly
affects large-scale ecological patterns such as spe-
cies-area curves (Plotkin et al. 2000b). Clustering of
conspecifics will further bias measures of species
similarity between sites that are already biased by
small sample sizes.

In this paper, we investigate how indices of com-
munity composition are affected by conspecific clus-
tering within samples, as well as by abundance distri-
butions and by sample size. We incorporate conspecific
clustering into the theory of sampling distributions by
using the negative binomial distribution. We derive an-
alytic expressions for the expected value of the most
basic similarity measure, the proportion of species in
common to two samples, under a large variety of con-
ditions. In order to test our results, we use information
on conspecific clustering and the abundance distribu-
tion in a50-hatropical forest plot to cal culate expected
similarities between subplots, and compare these to ob-
served similarities. Finally, we present numerical re-
sults for a variety of similarity indices, showing the
effects of conspecific clumping on their sampling
means and variances. We conclude by discussing the
implications of our results for biogeographic theory
and for landscape-scale sampling design.

SPECIES ABUNDANCE DISTRIBUTIONS

In this section, we review several common models
of species abundances for which we will later compute
the expected similarity between subsamples. The rel-
ative abundances of speciesin alarge region will have
a significant effect on the observed similarity between
two small samples from the region. If a few common
species dominate, then similarity in species composi-
tion between samples will be high; if there are many
rare species, similarity will be low.

The distribution of abundances within ecological
communitiesistypically described in one of two ways.
The number of species in different abundance classes
(often doubling classes) may be plotted as a histogram
(Preston 1962). Alternatively, species may be ranked
from most abundant to least abundant, and their abun-
dance, generally on a log scale, plotted against their
rank to produce a rank-abundance curve. These two
alternatives are entirely equivalent and the connection
between them is straightforward (May 1975). Fig. 1
illustrates five continuous probability distributions
commonly used to model abundances of species. The
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Fic. 1. Examples of five continuous abundance distri-

butions represented as probability density functions on alog
scale (top), and as rank—abundance curves (bottom). Param-
eter values are chosen so that all distributions have the same
mean, 1000. The truncated hyperbolic, lognormal, and gamma
distributions have the same variance, 2 X 106. The variance
of the exponential distribution is 10°. The variance of the
continuous logseries distribution is 7.5 X 10°. Exact param-
eter values are as follows: exponential A = 1/1000 ; gamma
B = 1/2 and N = 1/2000; lognormal pn = 2 log(1000) —
10g(1000V/3) and ¢ = [2 log(1000V3 — 2 log(1000)]*; trun-
cated hyperbolic m = 15.2954 and M = 5984.7; continuous
logseries x = 0.999882.

differences between the distributions are more apparent
when plotted as density functions rather than rank-
abundance curves.

For the purpose of analytically calculating the ex-
pected species overlap between sites, it is convenient
to summarize abundances with a continuous probability
density function ¢(n). The expression ¢(n) dn denotes
the probability that a randomly chosen species from
the community will have an abundance between n and
n + dn. The continuous density function is normalized
to total probability one: |5 &(n) dn = 1. In readlity, the
distribution of species abundances is discrete. Never-
theless, a continuous approximation is useful and com-
monly employed in the ecological literature (May
1975). Furthermore, we will demonstrate that contin-
uous abundance distributions yield almost precisely the
same results as their discrete analogues. Table 1 sum-
marizes the abundance distributions reviewed below.
The table indicates the names of the distributions, the
discrete analogues (where applicable), and the relevant
equations.
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TaBLeE 1. A summary of the species abundance distribu-
tions, with the discrete analogue of each continuous abun-
dance distribution, where applicable, and the relevant equa-
tions for the probability density functions.

Continuous distribution Discrete analogue Egs.
Lognormal 1
Truncated hyperbolic geometric series 2
Exponential broken stick 3
Gamma 4
Continuous logseries logseries 5-7

Lognormal distribution

A popular model of species abundances is the log-
normal distribution, for which the histogram of species
numbers is normal when abundances are binned (plot-
ted) on a log scale. The lognormal distribution takes
the form

(n() — Y]
¢'(n) no_\/g exp 252 J . (1)
This distribution is expected to arise if many indepen-
dent factors act multiplicatively to determine abun-
dances (May 1975). The lognormal distribution hastwo
free parameters, . and o. A one-parameter subfamily
called the canonical lognormal is also common in the
literature (Preston 1962, May 1975).

Truncated hyperbolic distribution

Another common abundance distribution is the so-
called geometric series distribution, whose rank—abun-
dance curve is linear when the abundance axis is log-
arithmic (Fig. 1b). The continuous anal ogue of the geo-
metric series is given by a truncated hyperbolic prob-
ability density function:

-1 fom=n=M
I -n=

b(n) = i“'”(a 2
n0) otherwise.

This distribution has two parameters, m and M, which
represent the minimal and maximal abundances in the
community. This distribution arises when the com-
munity is dominated by a single resource factor, and
if division of this resource proceeds in a hierarchical
manner. The most successful species occupies a frac-
tion of the resource, and the next most abundant species
occupies the same fraction of the remaining resource,
and so on. Ecologists have often referred to the trun-
cated-hyperbolic asthe ** exponential” distribution, be-
cause of the shape of its rank—abundance curve. Nev-
ertheless, we will reserve the term ‘‘exponential’ for
the abundance distribution given by Eq. 3.

Exponential distribution

We also use the exponential probability distribution
to describe the abundances of species. The exponential
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distribution is the continuous analogue to MacArthur’s
discrete “‘broken stick’ distribution (Longuet-Higgins
1971, May 1975). The exponential distribution has a
single parameter, \, and takes the form

b(n) = re )

Note that this distribution is in no way related to the
truncated hyperbolic distribution, which has been referred
to as *‘exponential’’ by some authors. Because it has one
parameter, the variance and mean of the exponential dis-
tribution cannot be varied independently.

Gamma distribution

We also investigate the gamma distribution, which
has two parameters. The gamma distribution is very
flexible and it matches empirical abundance distribu-
tions well, although it is rarely used in the ecological
literature:

\B nB*le*)xn
re)

When the shape parameter 3 equals one, the gamma
distribution simplifies to the exponential distribution.

() = ©)

Logseries distribution

The four preceding abundance distributions are all
continuous. Nevertheless, due its widespread use in
ecology, we will also include the logseries distribution,
which is discrete. The logseries was introduced by
Fisher et al. (1943) and, much like the truncated hy-
perbolic, describes the abundances of species that com-
pete for a single resource. The distribution is often
characterized by two parameters, x and «. If we let
&(N) denote the number of species with exactly N in-
dividuals, then the logseries satisfies

axN

) = - ©®)

where N is a positive integer and the parameter x lies
between zero and one. In this formulation, the discrete
density function ¢ isnot yet normalized; the total num-
ber of species present in the assemblage is given by S
= 3$(N) = —a In(1 — Xx). If the value of Sis fixed,
then x can be obtained from S, leaving only « as afree
parameter.

For our purposes we do not need to know the total
number of species present in the ambient large re-
gion. Hence, we will use the normalized form of the
logseries distribution, which depends upon a single
parameter x:

XN

d(N) = ———. (6)

)

We refer to Eq. 6 as the logseries distribution.
The natural continuous anal ogue of the logseriesdis-
tribution—just as the exponential distribution is the
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analogue of MacArthur's broken stick distribution
(Longuet-Higgins 1971)—is given by the following
density function:

O XN
b forn=1

o(n) = EJ’IF(O, —In(x)) 7
0 forn < 1.

In this equation, I'(X,y) represents the partial gamma
function defined by

I'x,y = j t-let dt.
t=y

We refer to Eq. 7 as the continuous logseries distri-
bution. As we shall see in Expected species overlap
between samples, the continuous analogue is an ex-
cellent approximation to the standard, discrete logser-
ies.

SAMPLING INDIVIDUALS FROM A LANDSCAPE

Given a species that occurs in a large region, the
number of its individuals that occur in a small sample
of the region depends on the total abundance of that
species in the larger region, the size of the sample, and
any conspecific spatial aggregation of the individuals.
We now formulate analytic expressions that describe
the probability of a species’ occurrence in asmall sam-
ple, given knowledge of its abundance in a larger am-
bient region. As is standard in such analyses (May
1975), we assume that the density of individuals of all
species combined is uniform in space. This assumption
is appropriate for many ecosystems, including closed-
canopy forests (e.g., Hubbell 2001).

Random spatial distributions

If al individuals are located randomly in space, then
the number of individuals of a species found in a sample
follows a binomial distribution, and is well approximated
by a Poisson distribution. (Equivalently, if agiven number
of individuals are sampled from an area by picking the
individuals in random locations, then the number of in-
dividuals per species will follow a binomial distribution.)
Consider a small sample whose area constitutes a pro-
portion a < 1 of the large ambient region. According to
the Poisson distribution, the probability ys(a,n) that a spe-
cies will be encountered in the sample, given that it has
abundance n in the larger region, is

b(a n) =1 - exp(—an). (8)

The Poisson distribution is the simplest model of
sampling individuals from a landscape. In previous
studies of similarity indices, authors have almost al-
ways assumed Poisson sampling (e.g., Morisita 1959,
Ricklefs and Lau 1980, Wolda 1981).

Aggregated spatial distributions

The Poisson distribution stipulates that the proba-
bility that a sampled individual is of aparticular species
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isindependent of the probability that another individual
in the sample is of that species. However, if samples
are taken within a contiguous area, then conspecific
aggregation often leads to nonindependence of indi-
viduals, elevating the probability of having more or
fewer individuals of a particular species, depending on
whether a clump is encountered or not.

Clustering of conspecifics within samples can be
modelled using the negative binomial distribution in
place of the Poisson. Specifically, if a species has abun-
dance n in the large area, then its probability of oc-
currence in a sample of proportional size a may be
represented by

-k

Wan=1- (1 + %) )
where Kk is a parameter that reflects the degree of ov-
erdispersion or clustering (Wright 1991, He and Gaston
2000). Parameter values k > 0 imply spatial aggre-
gation. Notice that as k - =0, the probability of oc-
currence approaches 1 — exp(—an). In other words, as
k - *oo, the spatial distribution approachesthe Poisson
(random) case. Parameter values k < O reflect spatial
patterns that are more regular than random placement.

Extensive analyses in tropical forests reveal that
nearly every species is aggregated, a few are random,
and almost none exhibit spatial regularity (He et al.
1997, Condit et al. 2000, Plotkin et al. 2000b). We
therefore assume that the clumping parameter k always
exceeds zero.

Both Egs. 8 and 9 and indicate that the probability
of a species’ occurrence in a sample of area zero is
zero, as we would naturally expect. In addition, we
would expect that a species that occurs in the large
ambient region will also occur in the sample with prob-
ability one as the size of the sample approaches the
size of the large region, a - 1. Unfortunately, neither
Eq. 8 nor 9 satisfies this criterion. This difficulty arises
because the Poisson and negative binomial both rep-
resent sampling with replacement. After an individual
is sampled, it is replaced back into the pool of indi-
vidualsin the large region (even though, strictly speak-
ing, it should be removed). Although the Poisson and
the negative binomial can be altered to amend this
shortcoming (He and Legendre 2002), the differences
between sampling with replacement and without re-
placement are negligible when, as will always occur in
practice, the sample size is significantly smaller than
the ambient community from which it is drawn.

ExPECTED SPECIES OVERLAP BETWEEN SAMPLES
General framework

Given alarge region for which we know (or assume)
an underlying abundance distribution of species, we
now investigate the expected proportion of species in
common between two small samples. The number of
species in common divided by the average number of
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Fic. 2. The expected Sgrenson similarity between sub-
plots of increasing area (a = b) on linear axes (top) and log-
linear axes (bottom). Areas a and b are measured as propor-
tions of the large ambient ecosystem. We compare theanalytic
expressions in Egs. 11 and 12 (lines) against the mean sim-
ilarity of 100 simulated samples (dots). Species abundances
were drawn from an exponential distribution with A = 0.01.
Individuals were sampled via either the Poisson distribution
(dashed line) or the negative binomial distributionwith afixed
clumping parameter k (solid lines). The similarity is shown
for various values of the clumping parameter (k = 0.2, 0.4,
0.8, 1.6, 3.2; starting from bottom curve). The mean similarity
found by numerical simulations of sampling with replacement
(from a large region of 30000 individuals) matches the an-
alytic predictions. Note that spatial aggregation can signifi-
cantly alter the similarity curve, but that as k - « the sim-
ilarity curve approaches the Poisson (random) case.

species in two samples is called the Sgrensen index of
similarity (Legendre and Legendre 1998). We will also
use the term species overlap. The Sgrenson index is
attractive and popular because of its simplicity and its
relation to the species—area curve.

We will consider two sampled regions whose areas
constitute proportions a and b, respectively, of alarger
ambient region. We assume throughout that the pos-
sible species pool in the two samples is the same. (For
discussion of cases where the species pool varies see
the Discussion and the Appendix.) We examine the
expected species overlap between the sampled regions
under each of four abundance distributions and under
both random (Poisson) and aggregated (negative bi-
nomial) spatial arrangements of individuals. Under
these conditions, we derive an analytic expression for
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the Sgrensen similarity, x(a,b), in all cases except the
lognormal abundance distribution. Using the same
techniques, analytic results are also possible for most
other measures of similarity based on species presence/
absence.

As before, let ¢(n) denote the distribution of species
abundances in the large ambient region. Let {i(a, n)
denote the probability of encountering a species in a
sample that covers a proportion a of the larger region,
given that the species has abundance n in the larger
region. With these definitions, the expected Sgrensen
similarity between the two samples is given by

f d(Mu(a, n)is(b, n) dn

x(a b) = —

1
2

f $(M(a n) dn + f $(Mi(b, n) dn

(109

The numerator represents the number of species in
common to the two samples, and the denominator rep-
resents the average of the number of species present
in each sample. Notice that the denominator of Eq. 10
is essentially a species—area relation. Although the de-
nominator contains a species—area relation, note that
the dependence of the Sgrenson index on sample area
is not simply equivalent to the scaling of the species
diversity with area.

For any abundance distribution ¢ of the species in
the large region and for any type of sampling of in-
dividuals ¢ (e.g., randomly placed individuals or ag-
gregated individuals), Eq. 10 determines the expected
number of species in common to two small subregions
whose areas constitute proportions a and b of the larger
ambient region. Notice that Eq. 10 does not involve
the total number of species contained in the ambient
region. Counter to our intuition, we can compute the
expected similarity between two samples without
knowledge of the total diversity contained in the am-
bient region. This fact justifies our use of a normalized
abundance distribution ¢(n) whose total species di-
versity is left unspecified.

Strictly speaking, Eq. 10 is only approximately cor-
rect because it treats the numerator and denominator
of Sgrensen’s index as independent quantities. Nev-
ertheless, when the samples are small compared to the
ambient region (as will always be the case in practice)
and when the ambient ecosystem is diverse enough so
that its abundance distribution is approximately con-
tinuous, then the simplifying assumption of indepen-
denceisjustified and Eg. 10 is extremely accurate. (The
accuracy of Eqg. 10, even for samples as large as 20%
of the ambient region, is demonstrated below by com-
parison with simulations.)

Analytical results

We now integrate Eqg. 10 under the assumptions of
various abundance and spatial distributions. We start
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with the situation in which two samples are drawn from
the same ambient region whose species abundance dis-
tribution is exponential (Eq. 3). Assuming that the spa-
tial distribution of individuals is random (or, equiva-
lently, that individuals are chosen for sampling at ran-
dom), then integrating Eq. 10 with Eq. 8 yields the
expected Sgrensen similarity between two samples

2ab(a + b + 2\)
@+ b+ \)(@2ab + an + bn)’

x(@ b) = 11

Next we address expected sample similarity when
the individual s are aggregated in space and samples are
contiguous. For a species with abundance n and con-
specific clustering parameter k, we use {s(a, n) given
by the negative binomial formulation (Eq. 9). We start
by assuming that all species are clustered in the same
way, i.e., that they all have the same value of the pa-
rameter k, and that this parameter is invariant across
spatial scales. (Below we address variation in the clus-
ter parameter k.) In this case, Eq. 10 is integrable pro-
vided that the two sampled regions have the same area
(i.e., a = b), yielding

x(a a)
= {(k — DT(R[2HT (1 — k, H)
— HZ2T(1 — 2k, H) — exp(—H)]}
= {[T(k + 1) — T(K]
X [HT(1 — k, H) — exp(—H)]} (12)

whereH = k\/a. Eqg. 12 matches simul ated dataexactly,
and shows that similarity islower when individuals are
aggregated as opposed to random (Fig. 2).

When the underlying abundance distribution is trun-
cated hyperbolic (Eqg. 2) and the spatial distribution is
Poisson (Eq. 8), then the expected Sgrensen similarity
between two subplots is given by

x(@& b) = {In(%) - I'(am) + I'(@M) — T'(bm)

+ T(bM) + T[(a + b)m] — I[(a + b)M]}

M 1 1 1
In<a> - EF(am) + EF(aM) - EF(bm)

+ %F(bM) . (13)

Under negative binomial sampling, we find a closed-
form solution for equal-sized samples: x(a, a) = 1/J
where

k
| = kIn<M> — 2(L> F(k, ki k + 1; L)
m am am
k\¢ k
+ 2<a—> F(k, ki k + 1; m)

M
2k
+ 1(L> F(Zk, 2k; 2k + 1, L)
2\am am
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1/ k \* K
— E(m) F(Zk, 2k; 2k + 1; m)
k
J=k In<M> - (L> F(k, ki k + 1; L)
m am am
K\ K
+ (m) F(k, ki k + 1; m) (14)

In these equations, F denotes the generalized hyper-

geometric function (Gradshtein and Rhyzhik 2000).
For gamma-distributed abundances (Eg. 4) and Poisson

sampling, the expected Sgrensen similarity is given by

x(a, b)

2@+ NP+ o+ NP — (@t b+ NP — AP
B (@+ NP+ (b+N)"— 21"

(15

In the case of gamma-distributed abundances and
conspecific spatial aggregation (Eq. 9), the expected
similarity between two subplots of proportional area a
equals x(a, a) = X/Y where

X =1+ {[TRI2K — B)F,(B, 1 + B — 2k, H)
— QT (K — B)FL(B, 1 + B — k H)]
+ [P (Z)H*]}
+ {[HT@ — 2F,(2k 1 — B + 2k, H)
—2T(B — KF;(k 1 — B + k H)]

< [T@)H )
. HM(K— B)F(B. 1+ — kH)
Y=1 )
_ HTE — KF((kk 1 - B + k H)
I @) (16)

where H = k\/a and F, denotes the Kummer confluent
hypergeometric function. Even through the analytic ex-
pressions above are complicated, they match simula-
tions exactly (not shown) and they also accurately
match empirical data (see Comparison with Empirical
Data). As usual, aggregated spatial distributions show
distinctly lower similarity than random (Poisson) spa-
tial distributions.

Unlike all of the other abundance distributions we
consider, the standard logseries distribution is discrete.
In this case, the equivalent discrete version of Eq. 10
takes the form

§¢mmmNmmN)

x(@ b) = . A7)

2| oM@ N+ 3 b, N)

In general, it is much more difficult to reduce Eq. 17
into closed form than it is integrate the quantities in
Eq. 10. Nevertheless, for the logseries distribution (Eg.
5 or 6) when individuals are distributed randomly in



3350

space (Eg. 8), then we have the following closed form
solution for the expected species overlap:

x(@ b) = {2[In(1 — xe2) + In(1 — xe ™)
—In(1 — x) — In(1 — xe*?)J}
+ [In(1 — xe2) + In(1 — xe™®)

— 21In(1 — X)]. (18)

If we use the continuous anal ogue of the logseries (Eq.
7), then under Poisson sampling we obtain

x(a, b) = {2[T'(0, —In(x)) + T'(0, a + b — In(x))
- TI'(0, a — In(x)) — T'(0, b — In(X))]}
+ [2I'(0, —In(x)) — I'(0, a — In(x))
— I'(0, b — In(x))]. (29)

In Fig. 3, below, we see that the continuous solution
(Eq. 19) agrees almost perfectly with the exact discrete
solution (Eq. 18), and that both solutions agree with
numerical simulations. This result validates our use of
continuous abundance distributions instead of their dis-
crete analogues (e.g., the exponential distribution in-
stead of the broken stick distribution, the truncated
hyperbolic instead of the geometric, etc.).

Comparison with previous literature

Previous studies have investigated species overlap
between samples. Wolda (1981) analyzed the situation
in which abundances are distributed according to the
logseries distribution, and individuals are sampled ran-
domly. (Wolda also investigated many other similarity
indices.) By fitting numerical simulations, Wolda ob-
tained an approximate equation relating expected spe-
cies overlap with sample sizes. Wolda gives approxi-
mations for four different parameter values of the log-
series distribution. In Fig. 3, we compare Wolda's ap-
proximate equations with our exact results and with
simulations (which match the exact results).

As seen in Fig. 3, Wolda's approximations are fairly
accurate within the range of sample sizes and for the
particular values of the logseries abundance distribu-
tion that he considered. Unfortunately, his numerical
results cannot be generalized to other situations. Egs.
11 through 19, on the other hand, provide exact sim-
ilarity predictions for a large range of abundance dis-
tributions, for arbitrary abundance-distribution param-
eters, and for both random and aggregated spatial dis-
tributions.

Variation in aggregation across species and across
spatial scales

So far, we have treated spatial aggregation viaaneg-
ative binomial sampling function whose clumping pa-
rameter, k, does not change with spatial scale nor de-
pend upon species. If the clumping parameter k depends
upon area, as it will in many ecosystems, then we can
simply replace the parameter k in Egs. 11-19 with the
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Fic. 3. The expected Sgrensen similarity between sub-
plots of increasing sizes on linear axes (top) and log-linear
axes (bottom). The dots show the simulation results, the
dashed line shows our analytic prediction, and the solid line
shows the approximation of Wolda (1981). Samples were
drawn randomly from a community that matches one of the
exact cases simulated by Wolda (1981): a community of
100000 individuals in which the abundance distribution of S
= 580 species is logseries with « = 81.54. Wolda (1981)
states that in this case the Sgrensen similarity should vary as
x(A, B) = 1.137 — 3.375A 037 — 281 X 107 B, where A is
the number of individuals in the smaller sample and B is the
number in the larger sample. We fix the size of the larger
sample, B = 1000, and plot similarity as a function of the
smaller sample's size, A. Numerical results (dots) represent
the mean of 100 simulated samples. Our analytic formulae
(Eq. 18, based up on the discrete logseries, and Eq. 19, based
upon the continuous logseries) are indistinguishable from
each other, and they match the numerical simulationsexactly.

dependency on area, k(a) and k(b). Thus we can easily
accommodate for changes in the intensity of aggre-
gation with spatial scale.

Studies have found that within a given species, k
often varies with the mean number of individuals sam-
pled. Empirical estimation of k at multiple spatial scales
from data on Barro Colorado Island shows that k in-
creases approximately linearly with the area sampled.
In this case, there is less of a difference between the
negative binomial and the Poisson at large areas, and
more of a difference at small areas.

Species may also differ from one another in their
tendency to aggregate. Extensive analyses of tropical
forests have demonstrated that species exhibit a range
of clumping intensities (Condit et al. 2000, Plotkin et
al. 2000b). Moreover, therange of clumping parameters
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cannot be collapsed to a single mean value without
losing information about the accumulation of species
diversity with area (Plotkin et al. 2000a, Plotkin and
Levin 2001). Tropical forest analyses do not reveal any
significant correlation between a species’ tendency to
aggregate and its abundance (Plotkin et al. 2000b). This
does not in itself imply that a species’ clumping pa-
rameter is uncorrelated with its abundance, because of
possible sampling biases in estimating k. Neverthel ess,
it isarelatively safe assumption that k and abundance
are only weakly correlated.

We can incorporate interspecific variation in clump-
ing into our analysis of similarity indices. If the dis-
tribution of clumping parameters is denoted by vy(k),
independent of abundance, then the expected similarity
between subplots a and b is given by simply

x(@ b) = f v(K)x(a, b, k) dk. (20)
k=0

For most distributions of k values, Eq. 20 is not easily
integrated into a closed form solution. Nevertheless,
this expression can certainly be evaluated numerically
for any given distribution of clumping parameters. As
we will see in the next section, however, we can often

safely ignoreinterspecific variation in k and still predict
intersite similarity with accuracy.

COMPARISON WITH EMPIRICAL DATA

The methodologies developed above are intended for
applications to landscape-scale patterns of species turn-
over. Nevertheless, we can evaluate the accuracy of our
analytic results by using data from the 50-ha tropical
forest census on Barro Colorado Island, Panama (Hubbell
et a. 1995). In this case, we consider the BCI census as
the *‘large ambient region,” and we sample multiple sub-
plots within the region, computing their observed species
similarities. Within the 50-ha plot on BCI every free-
standing woody stem >1 cm in diameter has been spa-
tially mapped to 1 m accuracy and identified to species.
The 50-ha plot contains 229070 such individuals com-
prising 300 species (1995 census year).

In order to apply the techniques developed here to
BCI, we must first choose aprobability density function
to model the abundances of species within the BCI
census. We find that the abundances are best modelled
by using a gamma distribution. In our case, we require
that the mean abundance of the best-fit distribution
agree with the empirically observed mean abundance
(763.57 individuals), so that the total number of in-
dividuals represented by 300 species agrees with the
observed total number of individuals. Therefore, we
require that /A = 763.57. Among this one-parameter
subfamily of gamma distributions, we choose the pa-
rameters (3 = 0.2452, A\ = 0.0003211) that minimize
the sum of the squared differences from the observed
abundances, when binned (plotted) on a logarithmic
(base two) scale (Fig. 4).
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FiGc. 4. A histogram of species abundances in the 50-ha
plot on Barro Colorado Island, with the best-fit gamma dis-
tribution (B = 0.245, A = 0.000321) . The first histogram bar
represents the number of species with n individuals, 1 = n
< 2. The second bar represents those species with 2 = n <
4, etc.

Given the best-fit gammaabundance distribution, Eq.
16 predicts the expected similarity between two ran-
domly chosen, equal-sized subplots, under the as-
sumption of conspecific spatial clustering. In order to
apply these equations, we must first measure the neg-
ative binomial parameter, k, at various quadrat areas
(Krebs 1999). Several empirical studies have investi-
gated the relationship between clustering k and quadrat
area. In our data, the scaling of k is, in general, best
described by a power law of the form

k(A) = cA? + d (21)

where A denotes quadrat area in square meters and c,
d, and z are constants.

The equations derived above (Egs. 12, 14, and 16)
assume that every species is described by the same
clumping parameter k(A), which may vary with area
A. In reality, however, there is considerable interspe-
cific variation in clumping parameters. Using the ob-
served abundances found in multiple quadrat draws
from BCI, we have estimated the best-fit parameter k(A)
for each species and for each quadrat area A via a
maximum likelihood procedure (Krebs 1999). Alter-
natively, we can use the same maximum likelihood
method to determine a best fit parameter k(A) that holds
across all species simultaneously. Fig. 5 showsthe best-
fit cluster parameters for two representative species at
BCI, as well as the best-fit cluster parameter for all
species overall. The scaling of the overall cluster pa-
rameter k(A) is accurately described by Eq. 21 with d
= 0.8604, c = 0.002923, and z = 0.5450 (r2 > 0.99).
The area is measured in square meters.

Fig. 6 shows the observed subplot Sgrensen simi-
larities at BCI as well as the predicted similarity using
a gamma abundance distribution and a power-law re-
lationship between clustering and area. We sample
square subplots of equal areas a = b constituting, at
most, 12.5% of the entire 50-ha region.
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Fic. 5. The observed relationship between spatial scale
and the clustering parameter k at BCI. All BCI species are
more clustered (lower k) at small scales than at large areas.
There is, however, considerable interspecific variation in the
scaling of k with area. For example, the x'sin the figure show
k values of Calophyllum longifolium (n = 1000), whereas the
open circles show Xylopia macrantha (n = 1133). The dots
show the clumping parameter at each scale that is the best fit
to all species simultaneously; the solid line shows the best-
fit power-law model of k(A) = 0.8604 + 0.002923 x A05%
(rz2 > 0.99).

As seen in Fig. 6, the negative binomial model
matches the observed similarity curve in the BCI 50-
ha plot fairly well. The predicted similarity isfar more
accurate when we account for aggregation than when
we assume a Poisson model (Fig. 6). The Poisson mod-
el consistently overestimates similarity, but fallswithin
two standard errors of the data as the subplot area be-
comes >5% of 50 ha. The Poisson approximation can-
not be rejected at larger areas because the k values
increase with area (Fig. 5). In all cases, however, the
negative binomial model predicts mean similarity more
accurately than the Poisson model.

Although it accurately describes the empirical data,
even the negative binomial model seems to overesti-
mate similarity slightly. Such errors generally arise be-
cause we are testing the theory at a relatively small
(50-ha) scale instead of a true landscape scale. There
are three distinct potential sources of error between our
analytic theory and the observed BCI similarity data.
First, we have modelled the species abundances at BCI
by using the gamma distribution (Fig. 4). Although the
gamma distribution fits the BCI data better than any
other well-known distribution, any discrepancies will
cause errors in the predicted similarity between sam-
ples. Second, we have assumed that every species at
BCI has the same clumping parameter k(A), and that
this parameters scales as a power-law in area. But in
reality we know that there is a range of clustering pa-
rameters across species. Third, we have assumed that
the spatial distribution of a species can be modelled by
the negative binomial sampling distribution. Although
the negative binomial is areasonable and popular mod-
el of spatial aggregation, it need not match the observed
sampling distribution {;(a, n) exactly. In particular, as
we have discussed before, the negative binomial for-
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mulation assumes sampling with replacement, whereas
there is no replacement when sampling in reality.

We can test the relative importance of these three
sources of error by using numerical simulations. For
instance, we can use the true observed abundances to
query the extent of error attributable to the gamma dis-
tribution assumption. Such simulations (not shown) in-
dicate that al three potential sources of error do, indeed,
contribute small amounts to the observed discrepancy
between model and data. Despite these minor sources
of error, Fig. 6 demonstrates a remarkably good fit.

NUMERICAL RESULTS AND OTHER
SIMILARITY INDICES

Exact results such as the ones presented above can be
easily derived only for the expected value (the sampling
mean) of presence/absence similarity indices, such as
Sgrenson’s index. Analogous results are more difficult to
obtain for quantitative similarity indices that incorporate
information on species abundances. Sampling variances
are also difficult to calculate analytically. Thus, further
exploration of the sampling distributions of similarity in-
dices requires numerical simulations.

Several studies have used simulations to examine a
variety of similarity indices and their dependence upon
sample size, as well as on species diversity, always
under the assumption of random sampling (Morisita
1959, Ricklefs and Lau 1980, Wolda 1981, Smith and
Zaret 1982, Mueller and Altenberg 1985, Smith 1985).
In this section, we examine the effects of spatial ag-

Similarity between subplots

0.02 0.04 0.06 0.08 0.1
Subplot size (proportion of 50 ha)

0.12

Fic. 6. Observed mean Sgrenson similarity between
equal-sized subplots of the 50-ha plot on Barro Colorado
Island (dots = 2 sg), compared with the similarity predicted
by two analytic models. The dashed line shows similarity
predicted according to Poisson sampling (Eq. 15), and the
solid line shows negative binomial sampling (Eq. 16). Pre-
dictions are based upon the fitted gamma abundance distri-
bution (3 = 0.245, A = 0.000321) and the scal e-dependent
clumping parameter k(A), as in Fig. 5. Observed similarity
was calculated, for each subplot size, as the average over
many (at least 64) randomly paired, disjoint subplots. The
negative binomial model accurately predicts the observed
similarity, whereas the Poisson model overestimates simi-
larity.
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gregation on sampling means and variances of a pres-
ence/absence and a quantitative similarity index.

As before, we will use Sgrensen’s index as a typical
presence/absence index. We use the Renkonen index
(Renkonen 1938) to illustrate the general behavior of
quantitative similarity indices. Whereas the Sgrensen’s
index is essentially the number of species in common
to two samples divided by the average number of spe-
cies in each sample, the Renkonen index may be
thought of as essentially the number of individuals in
common divided by the average number of individuals
in each sample. The Renkonen index is defined as

i min(n,(i), ny(i))
C(a1 b) = 1 I:Sl ) 1 S .
> 2:1 n,(i) + > 2:1 Ny (i)

(22)

where n (i) and n,(i) are the abundances of speciesi in
sample a and sample b, respectively, and Sis the total
number of species. The value of {(a, b) always lies
between 0 and 1; {(a, b) equals 1 only if the two sam-
plesaand b contain the same set of specieswith exactly
the same abundances. The Renkonen index has also
been referred to as the Steinhaus index (Motyka 1947),
the ** Sgrensen index with cover,” the ‘‘percent simi-
larity,”” and the ‘‘ coefficient of community.” The one-
complement of the Renkonen index is often called the
Bray-Curtis coefficient (Bray and Curtis 1957) or
Odum'’s percentage difference (Odum 1950).

Conspecific aggregation decreases expected similar-
ity and increases sample variance in both Sgrensen and
Renkonen similarity. This behavior is apparent from
Fig. 7, which shows simulation results using parameter
values consistent with the BCI 50-ha plot. Note that
the Renkonen index is much more sensitive to con-
specific aggregation, in both its mean and variance.
This sensitivity is a general phenomenon of quantita-
tive similarity indices that are responsive to the number
of individuals in each sample, rather than simply their
presence or absence. The degree to which quantitative
and presence/absence indices differ depends on the di-
versity of the community: for less skewed abundance
distributions and more species-rich communities, quan-
titative indices behave more like presence/absence in-
dices. Quantitative similarity indices are also more sen-
sitive to variation in clumping among species within
the community (not shown).

While most presence/absence similarity indices
show the same general response to sample size as the
Sgrensen, and most quantitative similarity measures
behave like the Renkonen, there are a few notable ex-
ceptions. The probability that an individual randomly
drawn from area a is the same species as an individual
randomly drawn from area b is unaffected by sample
size; this index, caled Morisita’'s index (Morisita
1959), has been used in recent analytic work (Chave
and Leigh, inpress, Leighetal., in press) and empirical
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FiG. 7. The sampling means = 2 sp of the Sgrensen (top)
and the Renkonen (bottom) similarity indices under Poisson
(solid) and negative binomial (dashed) sampling. We simu-
lated 1000 replicate communities, each containing 300 spe-
cies whose abundances were drawn independently from a
gamma distribution with N\ = 0.245 and 3 = 0.000321 (as
found on BCI). Negative binomial sampling assumed that k
was constant for all species and varied with sample size a as
in Fig. 5. Replicate similarity indices for a given sample size
and type were distributed normally; hence the =2 sp interval
shown encompasses 95% of the variation.

tests thereof (Condit et al. 2002). Under Poisson sam-
pling, the sampling mean of Morisita’s index is unaf-
fected by sample size, while the variance decreases
steadily with increased sample size. Negative binomial
sampling decreases the value of Morisita’'s index to a
level that is dependent on k alone and independent of
area; thus, under negative binomial sampling, Moris-
ita’s index will increase with area only if k increases
with area. The other quantitative similarity indices ex-
amined, Horn's information theory index (Horn 1966),
Euclidean distance (Ricklefs and Lau 1980), and Mor-
isita’s index as adjusted by Horn, show lower similarity
under negative binomial sampling than under Poisson,
and within each sampling scheme, exhibit decreasing
similarity at smaller sample sizes (not shown).

DiscussioN

Knowledge of the sampling distributions of similar-
ity indices is a prerequisite for testing biogeographic
theories of landscape-scale community variation, es-
pecially because such theories must be tested from
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small samples (e.g. Condit et al. 2000, Potts et al.
2002). In this paper, we have developed analytic tech-
niques that synthesizeinformation about the underlying
species abundance distribution and conspecific spatial
aggregation to yield exact mathematical predictionsfor
species overlap between sampled subregions. Such re-
sults can be used to detect and analyze variation in
underlying species composition, i.e., Species turnover,
from small censuses spread across a landscape.

We have demonstrated that local clustering of con-
specifics significantly reduces the similarity between
sampled subregions. Clustering also increases the var-
iance of sampled similarity indices. Nevertheless, we
can incorporate the effect of aggregation into analytic
formulae for the expected species overlap between
samples. These results are important in light of the
spatial aggregation that is nearly ubiquitous in tropical
forests and other ecosystems. In fact, without account-
ing for spatial aggregation, we cannot accurately ex-
plain the observed species overlap between subplots of
the 50-ha tropical forest census at BCI.

We have limited our analysis to the simple, null case
when two samples are drawn from the same underlying
region. In other words, we have assumed that a species’
abundance in the two sample locations is perfectly cor-
related, which is a reasonable assumption when the
samples are close together. If, instead, the samples are
from two very different, distant regions, and species
abundances in one region are not correlated with their
abundances in the other, then the species overlap be-
tween the samplesis a function of the joint abundance
distribution in the two regions; the integrals over abun-
dances in Eq. 10 would be replaced by double integrals
over the abundances in the two regions (see the Ap-
pendix). Solutions for two special cases of joint dis-
tributions are given in the Appendix. The appropriate
form of such joint abundance distributions for inter-
mediate cases in which the distributions in the two
regions are partially correlated has not yet been ad-
dressed and is an important topic for further research.

Our results, especially those regarding spatial ag-
gregation, have implications for the sampling design
of beta diversity studies. If the degree of spatial con-
tagion at the scale of measurement is known, then it
can be incorporated into expected similarity aswe have
shown. Alternatively, sampling efforts can be designed
to minimize the influence of local clustering by either
(1) arranging long narrow plots (cf. Gentry 1988), or
(2) spreading the same total sampled areaover agreater
region. The disadvantage of such irregular sampling
schemes is that they compromise our ability to char-
acterize any remaining effects of aggregation. Fur-
thermore, it would be difficult to compare similarity
measures cal culated between samplestaken in different
ways; sampling should above all be done consistently.
When the objective is to assess similarity between dif-
ferent regions, the fail-safe way to account for conta-
gion and sample size is to include replicate plots in
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each habitat or region being compared. In this way,
similarity between plotsin the same region can be con-
trasted with similarity of plots from different regions.

We have primarily focused on the Sgrenson index of
similarity. This simple index measures the proportion
of species that overlap between two samples. Although
we have seen that the Sgrenson index is not as sensitive
as other, quantitative indices, Sgrenson has several dis-
tinct advantages. Foremost, the Sgrenson index only
requires knowledge of species presence/absence in a
census, which is often the extent of information col-
lected in alandscape survey (Gaston 1994). Moreover,
the species overlap between samples is closely related
to the species—area curve in the underlying region.
Novel theories that unify species overlap and species—
area curves (Harte et al. 1999) are being devel oped.

Despite the vast literature on biogeography, there are
relatively few unified theories of community assembly,
based on biological mechanisms such as speciation and
dispersal, that predict the change in species composi-
tion across a landscape (Hubbell 2001). The most re-
cent contributions provide theoretical predictions for
one similarity index (Chave and Leigh, in press, Leigh
et al., in press), but predictions for species overlap
require further research. Such biogeographic theories
must eventually be tested against empirical data, bear-
ing in mind the effects of sample size on measured
statistics. Similarly, the design and placement of re-
fugia for the preservation of landscape-scale biodiver-
sity must be guided by a sound understanding of the
sampling distributions for species turnover.
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APPENDIX
ExPeECTED SPeECIES OVERLAP WHEN ABUNDANCES ARE NOT PERFECTLY CORRELATED

In general, the expected species overlap between two sam-
plesis afunction of the joint distribution, d(m, n) of species
abundances in the regions from which they are sampled,

where misthe abundance in the region from which proportion
aissampled, and nis the abundance in the region from which
proportion b is sampled:
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x(a b) =

f r f x b (m, n)gs(a, mus(b, n) dmdn

. {%U f &(m, My m) dm dn

+ f f & (m, n)ys(b, n) dn dm } (A.D
0 0

When the samples are taken from the same region such that
m = n for all species, then this equation reduces to Eq. 10. It
follows also that if samples are taken from regions that share
a proportion p of their species, with those species having the
same abundances in both regions and other species not shared,
then the expected species overlap between the samplesis sim-
ply p X x(a, b), where x is calculated as in Egs. 11-19.

If the species pool isidentical at the two samples, and the
abundance distributions have the same exact shape in both
regions, but the abundances of individual species in the two
regions are completely uncorrelated, then the expected sim-
ilarity is given by

x(a b) =

f $(n)(a, n) dn f ¢ (Mi(b, m) dm

L)t
"2
}. (A.2)

This situation is somewhat unrealistic, since it suggests that
exactly the same species are present in the two communities,
but that a species’'s abundance in one location is completely
uncorrelated with its abundance in the other. Nevertheless,
an examination of the extreme case of completely uncorre-
lated abundances may be useful in indicating the limitations
of similarity indices at detecting amounts of correlation.

When the two samples each comprise the same proportional
area of their respective ambient regions, a = b, then Eqg. A.2
reduces to x(a, a) = {5 &(n) Y(a, n)dn. In other words, in this
case the expected species overlap between the two samples
is simply the expected proportion of all the species in one
ambient region that occur in a sample of size a. So, in this
special case, the similarity between two subregions scales
linearly with the species—area curve, regardless of the abun-
dance or spatial distribution.

Below we present closed-form integrations of Eq. A.2 for
arange of abundance and spatial distributions, parallel to our
results in Egs. 11-19.

Truncated hyperbolic abundance distribution

For Poisson sampling and uncorrelated abundance distri-
butions, Eq. A.2 reduces to the following form:

x(@ b) = {2 In(%) + T(0, am) — T(0, aM)

f " s ) dn

+ f & (m)y(b, m) dm

X

In(%) + T(0, bm) — T'(0, bM)

9

+ T(0, bm) — T'(0, bM) ]

2 In<%> + I'(0, am) — T'(0, aM)

(A3)

For negative binomial sampling and uncorrelated abundances
with constant k:
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o) e

k
+ k(L> F(k, ki k + 1; L) In(M)
aM aM m

Exponential abundance distribution

x(a b) =

(A4

When the abundances are uncorrelated and spatial distri-
bution is random, we have

Kb = 49
Under negative binomial sampling, we find
x(@, b)
—2x5 a + b o*
- ek”ak}\E<k, Q) b eka)\E(k, 9)9
0 a b)o
(A.6)

where E(x, y) = [; e t~*dt is the exponential integral.

Gamma abundance distribution

Under Poisson sampling, with uncorrelated abundances we
find that

x(a, b)
20— @+ N PF—(b+ NP+ (@t b+ )P
a (-2\ B+ (@ + \)F + (b + \)F) '

(A7)

Under negative binomial sampling, we find that x(a,a) = N/
D where

N = {I(B) + a *(0)"
X [(K\NKF(2k, 1 — B + 2k H)I'(B — 2K)
~ 2aF( 1~ B + k H)I(B ~ KNI

_2af(\PF(R, 1+ B — k H)I'(k — B)

I'(k)
L at()F(E, 1+ B — 2k H)I(2k ~ )
T'(2K)
T'(@) ta k() Fk 1 — B + k H)I@ — K
D=1-
r'e)
_af(ka)PF@E, 1+ B — k H)I'(k — B)
I'k)

where H = k\/a.

Logseries abundance distribution

Under Poisson sampling, with uncorrelated abundances we
find that

x(@ b) = {2[In(1 — xe?) — In(1 — x)]
X [In(L = x) — In(1 — xe®)]}
= {In(2 — X)[In(1 — xe?) + In(1 — xe®)
- 2In(1 - X)]}. (A.8)



