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a b s t r a c t

We study a generalisation of Moran’s population-genetic model that incorporates density dependence.
Rather than assuming fixed population size, we allow the number of individuals to vary stochastically
with the same events that change allele number, according to a logistic growth process with density
dependentmortality.We analyse the expected time to absorption and fixation in the ‘quasi-neutral’ case:
both types have the same carrying capacity, achieved through a trade-off of birth and death rates. Such
types would be competitively neutral in a classical, fixed-populationWright–Fisher model. Nonetheless,
we find that absorption times are skewed compared to the Wright–Fisher model. The absorption time is
longer than theWright–Fisher prediction when the initial proportion of the type with higher birth rate is
large, and shorter when it is small. By contrast, demographic stochasticity has no effect on the fixation or
absorption times of truly neutral alleles in a large population. Our calculations provide the first analytic
results on hitting times in a two-allele model, when the population size varies stochastically.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

The time to fixation or extinction of a mutant allele in a fi-
nite population is a classical problem of population genetics, and
one in which there has been sustained interest (Kimura and Ohta,
1969a,b; Littler, 1975; van Herwaarden and van der Wal, 2002;
Ewens, 2004; Taylor et al., 2006). For reasons of mathematical
tractability, previous studies have typically assumed fixed popu-
lation sizes. In such models with deterministic population size,
birth events are followed immediately by death events. In natu-
ral populations, however, birth and death events are independent,
and the total population size varies stochastically around a typical
value, often governed by density dependence. Here we study fix-
ation times in a model that allows for stochastic population sizes,
which is therefore more realistic than the standard Wright–Fisher
formulation (Wright, 1931; Fisher, 1958; Ewens, 2004).
We have recently demonstrated (Parsons and Quince, 2007a,b)

that when population size varies stochastically, the probability of
fixation differs qualitatively from that of fixed or deterministic
population size models (Kimura, 1957, 1962; Moran, 1958; Ewens,
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1967; Kimura and Ohta, 1974; Otto and Whitlock, 1997). Similar
results appear in Lambert (2006). In particular, in the case of
two types that have the same carrying capacity, but achieve this
carrying capacity through different life-history strategies – what
we call the quasi-neutral case – the probability of fixation depends
not only on the initial density of the mutant type, as would be
expected from a fixed-population sizemodel, but also on the initial
population size.
Here, we study the expected time to absorption or fixation

for two quasi-neutral types. We use the framework introduced
in Parsons and Quince (2007a): a two-dimensional Markov chain
that models competition between discrete individuals of two
types (mutant and resident) in continuous time. Competition
is modelled via density dependent mortality, whose strength
varies inversely with ‘system size’ N . The system size reflects the
availability of resources, and it determines the carrying capacity
of all types. We use singular perturbation analysis (Grasman
and van Herwaarden, 1999) of a diffusion approximation to
obtain asymptotic expressions for the mean time to absorption
or fixation. These approximations increase in accuracy with
increasing N . Consistent with our previous findings, we find
that for types with different birth rates, the time to fixation
grows with the difference in birth rates. We also determine the
expected absorption and fixation times for an arbitrary number of
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truly neutral types — all having the same birth and death rates.
In this case, we obtain the classical expressions with the total
population number replaced by the carrying capacity — thereby
demonstrating that under strict neutrality the classical results
remain valid even when the assumption of fixed population size is
relaxed. Lastly, we verify our approximations by comparison with
exact numerical computations, and we investigate the accuracy
of our approximations at small population sizes over a range of
parameters.
In what follows, we present our model and our asymptotic

results with discussion, with the details of the derivation in the
appendices.

2. A model of allele fixation with density dependent mortality

We consider a population consisting of K types, subject to
density dependent regulation. All types have the same carrying
capacity, which is proportional to the ‘system size’ N . The system
size represents the pool of available resources; as the system size
is enlarged, carrying capacity of all types increases.
We denote the number of individuals of each type by XN =(
XN1 , . . . , X

N
K

)
. Here, XNi is the number of individuals of type i.

We emphasise N , as we will be interested in the asymptotic
behaviour as the system size becomes large. We assume that the
number of the each type changes as a result of stochastic birth
and death events in continuous time, for which the transition
rates — probabilities per unit time — depend only on the current
state of the system. This gives a Markov chain on

(
Z≥0

)K with
transitions only to neighbouring states, i.e., a K -dimensional birth-
and-death process (van Kampen, 1992), with transition rates as
given in Table 1.
Here βi and δi represent the birth and intrinsic death rates of

type i, respectively, and the system size N determines the carrying
capacity. δi gives a lower bound for the per capita death rate, which
increases in proportion to the total number of individuals and is
inversely proportional to the system size.
Our model naturally generalises the Moran model (Moran,

1958) by making births and deaths independent events, thereby
allowing the total population number to vary stochastically with
the same events that cause changes in allele number.
We previously determined fixation probabilities in the case

K = 2 (Parsons and Quince, 2007a,b) for a closely related process
with density dependent fecundity. While the model here may
appear different, due to density dependence in the mortality term,
the arguments and results for fixation times presented here are
identical for both models (unpublished results).
In this study, we assume that all types are quasi-neutral –

i.e. that the ratio of birth rates to intrinsic death rates is fixed,
δi
βi
= α, for all types i. This corresponds to the case when all

types have the same value for Kimura’s selection coefficient, s.
Thus, in a Wright–Fisher model assuming fixed population size,
all such types would be competitively neutral. However, when the
population size is allowed to vary stochastically, the population
dynamics correspond to a form of r vs. K selection (MacArthur
and Wilson, 1967; Pianka, 1972): types with higher birth rates
are favoured at small initial population sizes and types with
lower mortality are favoured as the population size becomes large
(Parsons and Quince, 2007b).
As N approaches infinity, N−1XN approaches a deterministic

dynamical system,

Ẋi = βiXi − δiXi

(
1+

K∑
j=1

Xj

)
. (1)

Under the assumption of quasi-neutrality, every point on the line∑K
j=1 xj =

1
α
−1 is a possible equilibriumpoint of the deterministic
Table 1
Density dependent mortality

Transition Rate

XNi → XNi + 1 βiXNi

XNi → XNi − 1 δiXNi

(
1+

∑K
j=1 X

N
j

N

)

system, corresponding to coexistence of all types.WhenN is finite,
the total number of individuals will rapidly approach

( 1
α
− 1

)
N ,

andwill remain near this value for a long time, before demographic
stochasticity leads to the extinction of one of the types. We thus
refer toN∗ =

( 1
α
− 1

)
N as the carrying capacity of the system.We

are primarily concernedwith the casewhenα ismuch smaller than
1, so that the population spends most of its time near the carrying
capacity.

3. Results

Strictly speaking, the only absorbing state of the model above
is extinction of all types. However, the total population number,
obtained by summing all types, obeys a logistic process, for which
the time before such extinction is exponentially large in the system
size, N (Newman et al., 2004). Long before the entire population
goes extinct, the population will become monomorphic for one of
the K types.
We are concerned here with the the first time at which the

population is monomorphic, which we call the absorption time.
Focusing on one particular type, i, we define the fixation time
as the absorption time conditioned on monomorphism of type i.
We will obtain asymptotic expressions for the expected time to
absorption and the expected (conditional) time to fixation for two
quasi-neutral types, and for an arbitrary number of strictly neutral
types. These expressions become exact as N approaches infinity,
and, as we confirm with numerical analysis, they are already very
accurate for N of the order of hundreds. We present our results
below, with details of the derivation in the appendices.
Asymptotically, both hitting times depend only on the initial

state of the system. We express these hitting times as a function
of new co-ordinates σi, which parameterise the flows of the
deterministic system Eq. (A.6) (Appendix A.3). If the types are
strictly neutral or if the population size starts at carrying capacity,
then σi is simply the initial proportion of type i in the population,
namely

σi =
Xi(0)
K∑
j=1
Xj(0)

.

In general, explicit expressions for the σi do not exist, although
they are well-defined and can be calculated numerically for any
parameters and initial population sizes (Appendix A.3).

3.1. Absorption and fixation times for two quasi-neutral types

For two quasi-neutral types, the expected time to first
absorption of either type is:

T (σ1) = −
N∗

2β1β2

[
(β1(1+ σ1)+ β2(1− σ1)) (1− σ1) ln(1− σ1)

+ (β1σ1 + β2(2− σ1)) σ1 ln σ1 +
(β1 − β2)

2

β1 + β2
σ1(1− σ1)

]
, (2)
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while the conditional expected time to fixation for type 1 is

T1(σ1) = −
1

π1(σ1)

N∗

2β1β2
[(β1(1+ σ1)

+ β2(1− σ1)) (1− σ1) ln(1− σ1)

+
1
3
β1 − β2

(β1 + β2)2
σ1(1− σ1)

(
2(β21 − β

2
2 )σ1

+ (β1 + 2β2)(3β1 + β2))] , (3)

where π1 is the asymptotic probability that type 1 fixes (Parsons
and Quince, 2007b):

π1(σ1) = σ1 +
β2 − β1

β1 + β2
σ1(1− σ1). (4)

In subsequent sections we compare these hitting times to those
expected under a neutral model. For now, we note the time to
fixation of a single mutant of type 1 invading a resident population
of type 2 is:

1
12
N∗(5β21 + 14β1β2 + 5β

2
2 )

β1β2(β1 + β2)
, (5)

asN gets large. This is obtained by taking the limitσ → 0 in Eq. (3).
This expression is symmetric: a single mutant of type 2 invading
a large resident population of type 1 has the same expected time
to fixation. This result is interesting in light of Eq. (4), which
shows that the type with lower birth rate has higher probability
of fixation. The symmetric behaviour of the fixation time arises
because we have conditioned on fixation. We discuss this issue
further below.
Our analysis requires that the population size spend a long

period of time near carrying capacity. This condition will be met
provided α is much less than unity. 1

α
is strictly larger than the

expected lifetime reproductive success of an individual, so as
α approaches unity, the carrying capacity approaches zero and
the entire population will rapidly go extinct. We are thus not
interested in the behaviour of the system for α near unity, as the
population behaviour degenerates in this regime. For intermediate
values of α, however, our results are in excellent agreement with
numerically determined times (neutral case in Fig. 2, quasi-neutral
absorption times in Fig. 3, and quasi-neutral fixation times in
Fig. 4). Our results agree with simulations for carrying capacities
as small as fifty individuals.
In Fig. 1A, we compare Eq. (3) with numerical calculations

of the fixation time for a single mutant for large and small
values of N . In agreement with our analytic expressions, fixation
time increases linearly in N . The slopes of both predicted and
numerically determined lines are equal to the limit of machine
precision. The lines differ only in their intercept – the result of
lower order terms – which we have not determined for Eq. (3),
but which are negative for the numerical results. Consequently we
are slightly overestimating the fixation time by a fixed amount.
This remains true as the population size is decreased, until around
twenty individuals (Fig. 1B), where the numerical results deviate
positively from the linear relationship to intercept the origin.
Much of this effect can be attributed to events where one or both
species vanish before the population arrives at the centremanifold.
Numerical investigations reveal that using the harmonic mean
population size in place of carrying capacity in our expressions
above provides a slight improvement in the intercept, with the
difference diminishing as N increases. Subsequent determination
of the quasi-stationary distribution shows that the harmonicmean
population size converges to the carrying capacity with increasing
values of N (Parsons and Plotkin, in preparation).
Fig. 1. A comparison of the analytic approximation (dashed lines) for fixation time
of a single mutant, Eq. (3) with exact numerical results (solid lines), for varying
values of N , (A) α = 0.5, β2 = 1.0, and β1 = 1.0, 2.0, and 5.0, as indicated on
the graph. (B) detailed view of the same figure for small N .

3.2. Absorption and fixation times for K neutral types

Under the assumption of true neutrality, βi ≡ β and δi ≡ δ
for all i, the results of the previous section can be used to obtain
fixation probabilities and times for an arbitrary number of types:
when the types are truly neutral, we can calculate the probability
of fixation and expected time to fixation for type i by considering
it as one type, and collapsing all other types into a single, second
type. Using Eqs. (3) and (4), we have

πi(σi) = σi

Ti(σi) = −
N∗

β

(1− σi) ln(1− σi)
σi

. (6)

Moreover, the absorption time is simply

T (σ1, . . . , σK ) =
K∑
i=1

πi(σi)Ti(σi) (7)

=

K∑
i=1

−
N∗

β
(1− σi) ln(1− σi) (8)

where σi is exactly equal to the initial density of type i:

σi =
XNi (0)
K∑
j=1
XNj (0)

.

Dividing by the expected age to first reproduction, 1
β
, we get the

expected number of generations until absorption or fixation. Our
expressions agree with the classical expressions (Ewens, 2004) for
absorption and fixation times in a population of fixed size equal
to the carrying capacity, N∗, and are in excellent agreement with
numerically exact results (Fig. 2A). In other words, in the case of
strict neutrality, classical results on fixation times in constant-
size populations still hold even when the population size varies
stochastically.
As we remarked above, we expect our estimated fixation time

to be less accurate for values of α near unity — in which case
the population spends significant periods away from carrying
capacity. In Fig. 2B, we compare our expression with numerically
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Fig. 2. A comparison of the analytic approximation (dashed lines) for fixation time
Eq. (6) in the neutral case (β1 = β2 = 1) with exact numerical results (solid lines).
(A) N varied at fixed α = 0.1, . . . , 0.9. (B) α varied at fixed N = 500, 1000, 1500.

exact absorption times over a range of values of α, for three
different values of N . We see that for the intermediate system
size, N = 1000, our results remain accurate for α < 0.8,
corresponding to a carrying capacity of only 250 individuals.
At smaller carrying capacities, our analytical expression over-
estimates the fixation time.

3.3. Comparison with fixed population size models

For strictly neutral types, (i.e. βi ≡ β), we have shown that
our expressions for mean absorption and fixation time coincide
with the classical expression for a population with fixed total size.
In this section, we compare absorption and fixation times in the
quasi-neutral case against equivalent fixed-sizemodels. Defining a
corresponding fixed-size model for the quasi-neutral case is more
complicated than for the strictly neutral case, as the two types have
different birth and death rates.We address this by using two fixed-
size models. Both models are formulations of the continuous time
Moran model (Ewens, 2004) with types that are neutral and with
fixed population size equal to the carrying capacity. In the first
model, we assume all types are identical, with common birth rate
equal to the harmonic mean of the birth rates in our quasi-neutral
model:

β̄ =
2

1/β1 + 1/β2
. (9)

For this choice of birth rate, each individual has mean time
to first reproduction equal to the average reproduction time in
an equilibrium quasi-neutral population. To keep the population
size fixed, we assume that each birth is immediately followed
by the death of a randomly chosen individual. The diffusion
approximation to this process, obtained in the large population size
limit, is equivalent to a haploidWright–Fishermodelwith effective
population size one half of census size. In this limit the fixation and
absorption times are given by Eq. (6) and Eq. (7) respectively, with
β as defined in Eq. (9).
The model above is the fixed population size equivalent of

our density-dependent model when the two types are identical.
However, this confounds two different effects. To investigate the
effect of fixed population size alone, we use a variant of the Moran
model that separates the fitness contributions of birth and death
rates (Parsons and Quince, 2007a). This is done by allowing the
Fig. 3. Time to absorption for two quasi neutral types as a function of initial
frequency, σ , of type 1. Total population size starts at carrying capacity, N∗ . The
graph shows exact numerical results (solid line) and the asymptotic approximation
Eq. (2) (dashed line). Parameters are β1 = 5, β2 = 1, α = 0.5 and N = 1000.
Results from the equivalent neutral fixed sizemodels, with identical types and birth
rate equal to the harmonic mean (dotted line) and different birth rates (dot-dash)
are also shown.

types to differ in their birth rates, and also in their probability
of being replaced subsequent to a birth event. To parameterise
this model in the quasi-neutral case, we simply take the birth
rates to be equal to those in our quasi-neutral model, β1 and β2,
and then weight the probability of replacement by the birth rates.
This ensures that the two types are neutral. It differs from the
standard Moran model in that the normalisation for the deaths
results in an extra frequency dependence in the rate at which
events occur. As a result, in the limit of large population size
there is no corresponding Wright–Fisher model. Since it is a
one dimensional stochastic process, the absorption and fixation
times can be written down explicitly and efficiently calculated
numerically (van Kampen, 1992).
In Fig. 3, we plot the time to absorption for two quasi-neutral

types as a function of initial frequency σ , starting with an initial
total population at carrying capacity (solid line). Comparing these
with the identical-type fixed-size model (dotted line), we see that
the quasi-neutral absorption times are skewed,with a longermean
absorption timewhen the typewith higher birth rate forms a larger
initial proportion of the population. Examining the equivalent
fixed size model with different types (dot-dashed line) we see
that this skew does not depend on a fluctuating population size,
but is rather a result of having types with different birth rates.
Fluctuations in the total population size reduce absorption times
when the type with higher birth rate is initially at low frequency.
This reflects the lower fixation probability for this type in a
fluctuating population, and the consequent increased likelihood of
its relatively rapid elimination from the population.
In Fig. 4, we show the mean time to fixation of type 1 and

type 2 for the density-dependent model and the two fixed-size
models. When the types are identical (dotted line), the fixation
time is independent of type and a decreasing function of initial
density. The effect of having typeswith different birth rates at fixed
population size (dot-dashed lines) is to increase the fixation times
for the higher birth rate type 1 and decrease them for the lower
birth rate type 2. This counter-intuitive effect is most pronounced
at intermediate initial densities. This suggests that the dynamics of
fixation are controlled not by the birth rate of the fixating type, but
by the death rate of the displaced type. Comparing these results to
our density dependentmodel (solid and dashed lines) it is apparent
that demographic stochasticity reduces fixation times for both
types, an effect that ismore pronouncedwhen the initial frequency
is smaller.
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Fig. 4. Time to fixation for two quasi neutral types as a function of initial frequency
σ , starting from carrying capacity: exact numerical results (solid line) and the
asymptotic approximation Eq. (2) (dashed line). Parameters are β1 = 5, β2 = 1,
α = 0.5 and N = 1000. The times are shown for both type 1 and type 2 (type
indicated on graph). Results from the equivalent neutral fixed size models, with
identical types and birth rate equal to the harmonicmean (dotted line) and different
birth rates (dot-dash) are also shown.

Fig. 5. Generations to fixation for each of two quasi-neutral types (type indicated
on graph) as a function of initial population size, starting from equal numbers of
each type: exact numerical results (solid line) and the asymptotic approximation
Eq. (3) (dashed line). Parameters are β1 = 5, β2 = 1, α = 0.5, and N = 1000.

3.4. Dependence on initial population sizes

In Fig. 5 we compare the time to fixation for the two
types as obtained from expression Eq. (3) with exact numerical
computations. The two agree very well for all but extremely
small population sizes, a consequence of very small populations
tending to go extinct before reaching carrying capacity. More
importantly, the figure shows the consequence of the trade-off
on fixation times: types that allocate toward higher birth-rates at
the cost of higher death rates will on average fix very rapidly in
unsaturated environments, but will take substantially longer than
a type with fewer births and deaths when the population is near
carrying capacity. This result likely has important consequences
when the population is subject to exogenous fluctuations, such as
bottlenecks. In particular, repeated extreme bottlenecks are likely
to favour the fixation of types with higher vital rates.

4. Discussion

The expressions in Section 3.1 are, to the best of our
knowledge, the first analytic results for the time to absorption
and fixation in a two-allele model with stochastically varying
population sizes. These are asymptotic results, and they can be
expected to be precise only for populations with large carrying
capacity. Nonetheless, numerical experiments confirm that they
are quite accurate for populations of one hundred or fewer haploid
individuals.
Our study focused on the quasi-neutral case: both types have

the same carrying capacity and would be considered neutral
in a fixed population size model. We have shown that in the
quasi-neutral case, the mean absorption and fixation times for
intermediate sized populations are skewed relative to a model
with identical types. This effect is independent of the presence of a
fluctuating population size. The effect of demographic stochasticity
is to reduce fixation times and absorption times. For quasi-neutral
mutants, fixation times are substantially smaller than for the
equivalent fixed size model, something we had noted previously
for deleterious mutants (Parsons and Quince, 2007a).
Interestingly, we observed that when a single individual

invades a resident population at equilibrium, the expected time to
fixation does not depend uponwhether the invader has a higher or
lower birth rate than the resident. In other words, the advantage of
a high birth rate at low population density is exactly compensated
by the disadvantage of high death rates at large population density.
By contrast, when the number of invaders is significantly larger
than one, invaders with a higher birth rate take longer to fix than
invaders with a lower birth rate. In Maruyama and Kimura (1974)
and van Herwaarden and van der Wal (2002) a similar result was
found for theWright–Fisher model with selection: a single mutant
that is negatively selectedwill on average take the same time to fix
as a positively selectedmutant.More recently, Antal and Scheuring
(2006) have shown that fixation times are equal in a population
of fixed size consisting of two types competing according to a
2×2matrix game, while Taylor et al. (2006) show that for all one-
dimensional discrete time Markov chains on {0, . . . ,N} satisfying
a detailed balance condition, if 0 and N are absorbing states, then
the distribution of first exit times conditioned on first exit through
0 or through N are equal. Inspired by their elegant argument,
in Appendix B, we show that for diffusions on an interval I =
(r0, r1), subject to a similar condition, the conditional first exit time
distributions across r0 and r1 are equal. The result in Taylor et al.
(2006) and our result are consequences of time-reversibility (Kent,
1978; Ewens, 2004): after a relaxation period, for all pairs of points
x, y ∈ {1, . . . ,N − 1} (x, y ∈ (r0, r1) respectively), the probability
that the process following a path of length t from x to y is equal to
the probability that the process goes from y to x in equal time. This
explains the equality in expected fixation times observed above,
and also ensures that all higher moments of the fixation time are
equal as well.
Lastly, we found that in the limit of true neutrality, when

all types have the same birth and death rates, our expressions
for times to absorption and fixation simplify to those derived
in the neutral case by Ewens, Littler, and Kimura and Ohta
(Kimura and Ohta, 1969a,b; Littler, 1975; Ewens, 2004), with the
carrying capacity in place of population size. In other words,
our results are compatible with classical theory. In addition,
our results demonstrate that the theory of neutral types with a
fixed population size remains asymptotically correct in predicting
fixation times for stochastically varying populations. This is due
in large part to the fact that the total population will rapidly
grow to carrying capacity and will thereafter spend a long period
fluctuating about carrying capacity. This is also true for the quasi-
neutral case, which indicates that one must use caution in making
separation of time-scale arguments. The differences between the
neutral and quasi-neutral cases arise from these fluctuations:
in the quasi-neutral case, the size of the fluctuations about
carrying capacity are not uniform, but rather vary according to the
proportion of the two types, which leads to fixation probabilities
and times that differ qualitatively from models with a fixed
population size.
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Appendix A. Deriving the asymptotic expressions

In this appendix, we give a sketch of themathematical details of
the derivation of equations Eqs. (2) and (3). Our argument proceeds
by three steps. We

(1) approximate the Markov chain XN by a diffusion process XN ,
(2) express the expected absorption and fixation times as solu-
tions to a Dirichlet problem,

(3) and lastly, reduce the Dirichlet problem to an analytically
solvable one-dimensional boundary value problem.

We elaborate on each of these steps below.

A.1. Diffusion approximation

For large N , we can approximate the process N−1XN by a
diffusion process XN (Ethier and Kurtz, 1986; van Kampen, 1992;
Gardiner, 2004). If XN has probability density p(y, t|x) – for all
A ⊆ RK ,

Px {XN(t) ∈ A} =
∫
A
p(y, t|x) dy,

where Px denotes the probability conditioned on initial value x –
then pmust satisfy the Fokker–Planck equation

∂tp(y, t|x) = −
K∑
i=1

∂yi
[
bi(y)p(y, t|x)

]
+
1
2

K∑
i,j=1

∂2yi

[
aij(y)p(y, t|x)

]
,

where

bi(y) = βiyi − δiyi

(
1+

N∑
j=1

yj

)

Naij(y) =

βiyi + δiyi
(
1+

N∑
j=1

yj

)
if i = j,

0 otherwise

(A.1)

with initial condition

p(y, 0|x) = δ(x− y).

Under the assumption of quasi-neutrality, in the limit as N →
∞, XN approaches a deterministic dynamical system

Ẋi = βiXi

(
1− α

(
1+

N∑
j=1

Xj

))
(A.2)

with an attracting centre manifold along the hyperplane{
x ∈ RK |

K∑
j=1

xj =
1
α
− 1

}
.

A.2. Exit probabilities and times

The diffusion process XN may be visualised as describing the
motion of a particle in

(
R≥0

)K . Extinction of a type i corresponds
to the particle exiting this region through one of the faces Γi =
{x|xi = 0, xj 6= 0, j 6= i}.
The problem of exit from a domain has been long studied, and

it is a well known result (Gardiner, 2004) that the probability of
exiting through Γi starting from an initial point x, πi(x), satisfies
the Komolgorov equation

K∑
i=1

bi(x)∂xiπi(x)+
1
2

K∑
i,j=1

aij(x)∂2xiπi(x) = 0 (A.3)

with boundary conditions

πi|Γj = δij,

while the expected time to first exit, across any face, starting from
x, T (x) satisfies

K∑
i=1

bi(x)∂xiT (x)+
1
2

K∑
i,j=1

aij(x)∂2xiT (x) = −1 (A.4)

with boundary condition

T |Γj = 0 for all j.

Lastly, the expected time to exit, conditioned on exit through Γi, Ti,
satisfies
K∑
i=1

bi(x)∂xi (πi(x)Ti(x))+
1
2

K∑
i,j=1

aij(x)∂2xi (πi(x)Ti(x)) = −πi(x)

(A.5)

with boundary condition

(πiTi) |Γj = 0 for all j.

A.3. Projection on the centre manifold

To proceed, we introduce co-ordinates σi and τ such that

xi =


(
1
α
− 1

)
σie−βiτ if i < K(

1
α
− 1

)(
1−

K−1∑
i=1

σi

)
e−βK τ if i = K .

(A.6)

We obtain σ and τ via a change of time coordinates in the
dynamical system Eq. (A.2): let X(t, x) denote the solution starting
from x at time t = 0, and define

σ(x) =
(
1
α
− 1

)−1
lim
t→∞

X(t, x),

G(t, x) =
∫
∞

t
1− α

(
1+

K∑
j=1

Xj(s, x)

)
ds,

and

τ(x) = G(0, x).

Then if Ẏi = βiYi has solution Y(t, x), a simple calculation shows
that

X(t, x) = Y(G(t, x),
(
1
α
− 1

)
σ(x)). (A.7)

Thus, the two systems follow the same solution curves, but at
different rates, with trajectories of Y beginning at the endpoints
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of the trajectories of X at t = ∞. Now Yi(t, x) is simply an
exponential function; combining this with Eq. (A.7) and evaluating
at t = 0 yields Eq. (A.6). Intuitively, τ is a measure of the distance
of the point x from the centremanifold

∑K
i=1 xi =

1
α
−1,whileσ(x)

maps each trajectory of Eq. (A.2) to a unique point in the standard
simplex

∆K =

{
x ∈ RK |

K∑
j=1

xj = 1

}
,

giving a convenient parameterisation of the flows. In the neutral
case, we have

σi =
xi
K∑
j=1
xj

,

while in general, the dependence of σi on x is more complicated,
and the value of σ must be determined numerically.
In (Parsons and Quince, 2007b), we showed that by making a

change of variable τ = T
√
N
and looking for an asymptotic series

expansion in powers of N−
1
2 , the solution, π1, of Eq. (A.3) could be

determined to order O(N−
1
2 ), from a lower dimensional problem

on the centre manifold. An identical argument applies here; we
refer the reader to our previous paper for details.
We now focus on the case K = 2, for which we are able

to find analytical asymptotic expressions for the exit times and
probabilities. In this case, the fixation of type 1 corresponds to the
first exit across Γ2, while the centre manifold is simply the set of
points {(σ1, τ )|0 ≤ σ1 ≤ 1, τ = 0}. After projection to the centre
manifold, our process reduces to a one dimensional diffusion
Σ(t) on (0, 1), while Eqs. (A.3)–(A.5) become ordinary differential
equations:

β1β2(1− σ1)σ1( 1
α
− 1

)
N(β1σ1 + β2(1− σ1))2

×

[
(β2 − β1)

dπ1
dσ1
+ (β1σ1 + β2(1− σ1))

d2π1
dσ 21

]
= 0

π1(0) = 0
π1(1) = 1

for the fixation probability (see (Parsons and Quince, 2007b),)

β1β2(1− σ1)σ1( 1
α
− 1

)
N(β1σ1 + β2(1− σ1))2

×

[
(β2 − β1)

dT
dσ1
+ (β1σ1 + β2(1− σ1))

d2T
dσ 21

]
= −1

T (0) = T (1) = 0

for the expected time to absorption, and

β1β2(1− σ1)σ1( 1
α
− 1

)
N(β1σ1 + β2(1− σ1))2

×

[
(β2 − β1)

d
dσ1

(π1T1)+ (β1σ1 + β2(1− σ1))
d2

dσ 21
(π1T1)

]
= −π1

π1(0)T (0) = π1(1)T (1) = 0

for the expected time to fixation of type 1.
These linear equations may be readily solved to give the

expressions presented in 3.1.
Appendix B. Equality of fixation times in symmetric diffusions

In this appendix, we sketch a proof of the equality of the
distribution of fixation times for a class of diffusions X(t) defined
on an open interval I = (r0, r1) that includes our processΣ(t).
Let X have distribution p(t, y|x) satisfying the Fokker–Planck

equation

∂tp(t, y|x) =
1
2
∂2y [a(y)p(t, y|x)]− ∂y [b(y)p(t, y|x)]

with a(y) > 0 on I , with absorbing boundary condition

lim
y→ri
W (y)a(y)p(t, y|x) = 0 (B.1)

where

W (y) = e−2
∫ b(y)
a(y) dy. (B.2)

Thus, p(t, y|x) also satisfies Komologorov’s equation

∂tp(t, y|x) =
1
2
a(x)∂2x p(t, y|x)− b(x)∂xp(t, y|x)

with boundary condition

lim
x→ri
p(t, y|x) = 0 (B.3)

(Feller, 1954a; McKean, 1956).
We assume additionally that a(y) and b(y) are in C2(I), p(t, y|x)

is in C2([0,∞)× I × I), and that for i = 0, 1

0 < lim
y→ri

∣∣∣∣b(y)a(y)

∣∣∣∣ <∞. (B.4)

Note that we do not require limy→ri a(y) or limy→ri b(y) to be non-
zero or finite, so our assumptions include the process Σ(t). We
refer the reader to Feller (1954a,b) andMcKean (1956) for detailed
discussions of conditions under which these postulates apply.
For the exit time distributions to be sensible, we also require

both boundaries of I to be accessible according to Feller’s
classification scheme (Feller, 1954a,b; Ethier and Kurtz, 1986;
Ewens, 2004): let

m(y) =
∫

1
a(y)W (y)

dy and p(y) =
∫
W (y) dy

be the speed measure and scale function, respectively. We then
require that

u(y) =
∫
m(y) dp(y)

be finite in the limit as y → ri (so both boundaries are exit or
natural.) This implies that with non-zero probability, the process
will exit across one or the other boundary in finite time: if

τy = inf{t ≥ 0|X(t) = y},

then for all x ∈ I ,

Px
{
τri <∞

}
> 0.

It may be readily verified that both 0 and 1 are accessible
boundaries forΣ .
Under these assumptions, the diffusion is symmetric with

respect tow(y) (Kent, 1978):

p(s, y|x)
w(y)

=
p(s, x|y)
w(x)

where

w(y) =
1

a(y)W (y)
.
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Moreover, the probability current,

J(t, z|x) = lim
y→z

1
2
∂y [a(y)p(t, y|x)]− b(y)p(t, y|x)

is continuous and finite everywhere on Ī = [r0, r1]. Note that we
require the use of a limit in our definition of the probability current
so that it can be applied at the endpoints r0 and r1 of I . We also note
that Eqs. (B.1) and (B.4) together imply that

J(t, ri|x) = lim
y→ri

1
2
∂y [a(y)p(t, y|x)] , (B.5)

while from Eq. (B.3) we have

lim
x→rj
J(t, ri|x) = 0

for i 6= j.
Under our smoothness assumptions on p(t, y|x), we may

express the conditional exit-time distributions in terms of the
probability current J (Gardiner, 2004):

Px {τ > t|X(τ ) = ri} =

∫
∞

t J(s, ri|x) ds∫
∞

0 J(s, ri|x) ds
.

J(s, ri|x) is the flow of probability across ri at time s, i.e. the
probability that the diffusion process will exit in [s, s+∆s). Thus,
the numerator is the cumulative probability of exit at ri for all times
s > t , while the denominator is the flow across ri for all time,
and thus the probability of exit across ri; the fraction gives the
conditional probability of exit across ri at some time after t . We
will use this expression to show that for a symmetric diffusion,

lim
x→r0

Px {τ > t|X(τ ) = r1} = lim
y→r1

Py {τ > t|X(τ ) = r0} . (B.6)

The right hand side of this equality is

lim
x→r0

∫
∞

t J(s, r1|x) ds∫
∞

0 J(s, r1|x) ds

= lim
x→r0

∫
∞

t a(x)w(x)J(s, r1|x) ds∫
∞

0 a(x)w(x)J(s, r1|x) ds
.

Now, from Eq. (B.3), both numerator and denominator vanish as
x→ r0, so applying l’Hôpital’s rule,

= lim
x→r0

∂x
[∫
∞

t a(x)w(x)J(s, r1|x) ds
]

∂x
[∫
∞

0 a(x)w(x)J(s, r1|x) ds
] .

Using Eq. (B.5),

= lim
x→r0

∂x

[∫
∞

t lim
y→r1

1
2∂y [a(y)a(x)w(x)p(s, y|x)] ds

]
∂x

[∫
∞

0 lim
y→r1

1
2∂y [a(y)a(x)w(x)p(s, y|x)] ds

]

= lim
x→r0

∂x

[∫
∞

t lim
y→r1

1
2∂y [a(y)a(x)w(y)p(s, x|y)] ds

]
∂x

[∫
∞

0 lim
y→r1

1
2∂y [a(y)a(x)w(y)p(s, x|y)] ds

]
where we have used the symmetry of X(t): p(s,y|x)

w(y) =
p(s,x|y)
w(x) . We

have assumed p(t, x|y), a(x), and a(y)w(y) are twice continuously
differentiable, and their product has a continuous and bounded
(and thus uniformly continuous) extension to Ī , so we can
interchange limits, derivatives and integrals with impunity to
obtain

= lim
x→r0

lim
y→r1

∂y
[
a(y)w(y)

∫
∞

t
1
2∂x [a(x)p(s, x|y)] ds

]
lim
y→r1

∂y
[
a(y)w(y)

∫
∞

0
1
2∂x [a(x)p(s, x|y)] ds

] ,
and, provided the limits in the numerator and denominator exist,

=

lim
y→r1

∂y

[
a(y)w(y)

∫
∞

t lim
x→r0

1
2∂x [a(x)p(s, x|y)] ds

]
lim
y→r1

∂y

[
a(y)w(y)

∫
∞

0 lim
x→r0

1
2∂x [a(x)p(s, x|y)] ds

] ,

=

lim
y→r1

∂y
[
a(y)w(y)

∫
∞

t J(s, r0|y) ds
]

lim
y→r1

∂y
[
a(y)w(y)

∫
∞

0 J(s, r0|y), ds
] .

Since the flux is well defined at r0, this last line allows us to
conclude that the limits do indeed exist. We conclude by applying
l’Hôpital’s rule again:

= lim
y→r1

a(y)w(y)
∫
∞

t J(s, r0|y) ds

a(y)w(y)
∫
∞

0 J(s, r0|y) ds
= lim
y→r1

Py {τ > t|X(τ ) = r0} ,

yielding our desired result.
Note that

1
2
∂2y [a(y)w(y)]− ∂y [b(y)w(y)] = 0,

so w(y), when integrable, is a stationary distribution for X(t),
which is the case provided limy→ri a(y) > 0. When a(y) degene-
rates at the boundaries,w(y) is often a good approximation to the
quasi-stationary distribution for X(t), except near to the endpoints
of I (Gardiner, 2004) — in this case, the only true stationary
distribution is 0, as X will exit through one of the endpoints with
probability 1.
We may use this fact to give an intuitive interpretation of Eq.

(B.6): after a transient period, the distribution of X converges to
w(x), except perhaps very near the boundaries. Thus, X is time-
reversible with respect to w: the probability of moving from x
to y in time t is w(x)p(t, y|x), which, by symmetry, is equal to
the probability w(y)p(t, x|y) of X moving from y to x in the same
time (Kent, 1978). In particular, the probabilities of the process
traversing a path from r0 to r1 in time t or from r1 to r0 in the same
time are equal, yielding Eq. (B.6).
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