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We explore how evolutionary game dynamics have to be modi"ed to accomodate a mathemat-
ical framework for the evolution of language. In particular, we are interested in the evolution of
vocabulary, that is associations between signals and objects. We assume that successful
communication contributes to biological "tness: individuals who communicate well leave
more o!spring. Children inherit from their parents a strategy for language learning (a language
acquisition device). We consider three mechanisms whereby language is passed from one
generation to the next: (i) parental learning: children learn the language of their parents;
(ii) role model learning: children learn the language of individuals with a high payo!; and
(iii) random learning: children learn the language of randomly chosen individuals. We show
that parental and role model learning outperform random learning. Then we introduce
mistakes in language learning and study how this process changes language over time.
Mistakes increase the overall e$cacy of parental and role model learning: in a world with
errors evolutionary adaptation is more e$cient. Our model also provides a simple explanation
why homonomy is common while synonymy is rare.
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1. Introduction

A unity of design and a diversity of implementa-
tions are de"ning features of evolved traits.
Common descent provides a set of shared charac-
teristics upon which local adaptation and
ontogenetic mechanisms impress their modi"ca-
tions. For a small set of species learning has
opened up the possibility of almost limitless var-
iety, to the extent that the underlying uniformity
has been obscured. This is particularly true for
human language and to a lesser extent, for signal
evolution in animals.

Humans from di!erent language communities
employ di!erent sounds to denote the same ob-
ject, action or property. Among the song birds,
dialects are highly variable and change within an
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individual over the course of its life (Lemon, 1975;
Catchpole et al., 1984; Balaban, 1988; Kroodsma
& Konishi, 1991). The common structures of hu-
man and some animal signals have in part been
elucidated (Chomsky, 1965, 1972, 1975, 1980;
Frisch 1967; Marler, 1970; Marler & Pickert,
1984; Marler et al., 1988). It is now thought that
features of human language are &&universal'' and
constant across language communities: the prin-
ciples of language are shared and have evolved,
while the parameters are free to change through
learning (Pinker & Bloom, 1990; Pinker, 1994).
This begs the questions, why learn signals at all
and why not simply inherit them? Why when
these signals have been learnt do they so often
change? Which members of a community should
serve as models for imitation? And which compo-
nents of a strategy are inherited and which ones
learnt?
( 1999 Academic Press
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Imitation like language is rare in nature (Galef,
1988). Since language learning in humans re-
quires imitation, a part of the explanation for
language's rarity might be ascribed to the di$cul-
ties of imitation. The problem is in part evolving
a means of associating an action with a goal and
a reward without experiencing it oneself. Fur-
thermore, which individual of a population is
best to imitate? A safe place to begin is with ones
parents. Human infants of a few weeks in age, and
even newborns, show a tendency to imitate the
facial gestures of those around them (Meltzo!,
1983; Meltzo! & Moore, 1994). Imitation is cen-
tral to language acquisition but there is more to
learning a language than simple imitation. Lan-
guage acquisition is not the same as learning
a skill through guided trial and error because it
requires the formation of a shared representation
among signallers. Linguistic signals are referen-
tial and hence imitation need not imply under-
standing. Imitation of a signal when coupled to
an inappropriate behaviour will be selected
against.

There are numerous publications on the evolu-
tion of human language ranging from studies of
primate or other animal behaviour (Smith, 1977;
Seyfarth et al., 1980; Burling, 1989; Cheney
& Seyfarth, 1990; Poran & Coss, 1990; Green-
"eld, 1991; Hauser, 1996; Dunbar, 1997; Brad-
bury & Vehrencamp, 1998), to the development
of language in young children (Brown, 1973;
Anis"eld, 1984; Sachs, 1985; Newport, 1990;
Hurford, 1991; Bates, 1992), the genetic and ana-
tomic correlates of language competence (Wittel-
son & Pallie, 1973; Lieberman, 1984, 1991;
Newport, 1990; Nobre et al., 1994; Deacon, 1997)
and the diversity of existing human languages
(Greenberg, 1971; Cavalli-Sforza & Cavalli-
Sforza, 1995; Cavalli-Sforza, 1997). Maynard
Smith & Szathmary (1995) described human lan-
guage as a major transition in evolution (see also
Szathmary & Maynard Smith, 1995). Bickerton
(1990) argues that this transition is likely to have
been abrupt, while Pinker (1994) has argued that
a gradual process is likely to have been su$cient.
Most studies of language evolution do not use
mathematical models. There are some exceptions
(Aoki & Feldman, 1987, 1989; Hurford, 1991;
MacLennan, 1992; Hashimoto & Ikegami, 1995;
Hutchins & Hazelhurst, 1995; Oliphant, 1996;
Parisi, 1997; Palacious, 1998; Steels, 1998;
Briscoe, 1999; see also Hurford et al., 1999). In
an early theoretical paper, Hurford (1989) discus-
sed a mathematical model for the evolution of
Saussarian signs (Saussure, 1916). Hurford's
model is similar to our approach here and also
uses two matrices to describe communication.
Cavalli-Sforza & Feldman (1981) and Boyd
& Richardson (1985) provide alternative mathe-
matical frameworks for cultural transmission in
evolution.

Our aim here is to expand the standard as-
sumptions of evolutionary game theory and de-
velop a general, but simple mathematical model
for understanding the evolution of language. In
particular, we are interested in the evolution of
a common vocabulary (that is a speci"c associ-
ation between signals and objects). We do not
explore the evolution of syntax or grammar in
this paper. We extend an approach taken by
Nowak & Krakauer (1999) and study in more
detail how language is transmitted from one gen-
eration to the next. In Nowak & Krakauer
(1999), we simply assumed that o!spring adopt
the language of their parents; here we specify
learning mechanisms. Section 2 de"nes the
model. Section 3 formalizes language learning.
Section 4 outlines the population dynamics and
discusses three mechanisms whereby language
is transmitted from one generation to the next.
Section 5 takes advantage of mistakes. Section 6
shows results on competition between the mecha-
nisms of language transmission. Section 7 con-
cludes. Appendix A classi"es some binary
matrices, which are the absorbing states of our
stochastic evolutionary processes. Appendix B
describes a paradoxical result: two individuals
may understand each other better than them-
selves.

2. De5ning the Model

Consider a group of individuals (animals or
early hominids) able to produce a number of
signals (sounds). Information shall be transferred
about a number of objects; we use &&objects'' (or
concepts) in an extended sense to include other
individuals, other animals, plants, inanimate ob-
jects, actions or events (all things that can be
referred to). Suppose there are m signals and
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n objects. The matrix P contains the entries p
ij
,

which denote the probability that for a speaker
object i is associated with sound j. P is an n]m
matrix whose rows sum to 1:

m
+
j/1

p
ij
"1. (1)

The matrix Q contains the entries q
ji
, which de-

note the probability that for a listener sound j is
associated with the object i. Q is an m]n matrix
whose rows sum to 1:

n
+
i/1

q
ji
"1. (2)

P describes speaking, whereas Q describes
listening (comprehension). We call P the &&active
matrix'' and Q the &&passive matrix''.

Imagine two individuals, I
1

and I
2
, who use

languages ¸
1

(given by P
1

and Q
1
) and ¸

2
(given

by P
2

and Q
2
). For individual I

1
, p(1)

ij
denotes the

probability of making sound j when seeing object
i, whereas q(1)

ji
denotes the probability of inferring

object i when hearing sound j. For individual I
2
,

these probabilities are given by p(2)
ij

and q(2)
ji

. Sup-
pose I

1
sees object i and signals, then I

2
will infer

object i with probability +m
j/1

p(1)
ij

q(2)
ji

. A measure
of I

1
's ability to convey information to I

2
is given

by summing this probability over all objects, n:
+n
i/1

+m
j/1

p(1)
ij

q(2)
ji

. The overall payo! for commun-
ication between I

1
and I

2
is taken as the sum of

I
1
's ability to convey information to I

2
, and I

2
's

ability to convey information to I
1
. Thus,

F(¸
1
, ¸

2
)"

1
2

n
+
i/1

m
+
j/1

(p(1)
ij

q(2)
ji
#p(2)

ij
q(1)
ji

). (3)

In this equation, both individuals are treated
once as a listener and a speaker, which leads to
the intrinsic symmetry of the language game:
F(¸

1
, ¸

2
)"F(¸

2
, L

1
). Language ¸

1
obtains

from ¸
2

the same payo! as ¸
2

from ¸
1
. If

two individuals use the same language, ¸, the pay-
o! is

F(¸, ¸)"
n
+
i/1

m
+
j/1

p
ij
q
ji
. (4)
The passive matrix, Q, can be treated as com-
pletely independent of P. In this case, it is not
taken for granted that an individual who signals
&&leopard'' when seeing a leopard will also con-
ceive of a leopard when hearing &&leopard''; this
symbolic association is something which must be
formed by the evolutionary dynamics of the sys-
tem. Alternatively, we could assume that indi-
viduals have an internal mechanism that links
their active and passive matrices.

2.1. SOME COMMENTS ON P AND Q

2.1.1. ¹he best possible Q

An interesting question is: for a given P what
is the optimum Q that maximizes the payo!
F(¸, ¸)? We "nd that the optimum Q is always
a binary matrix such that q

ji
"1 if p

ij
is the

largest entry in a column of P; all other entries of
Q are 0. (In case there are 2 or more equally large
entries in a column of P one may be chosen
at random.) Thus for a given matrix P, the
maximum payo! is given by

F
max

(¸, ¸)"
m
+
j/1

p
*j

, (5)

where p
*j

is the maximum entry in column j of
the P matrix.

2.1.2. ¹he best possible P and Q

The maximum payo! for a P and Q pair is
obtained for binary active matrices P that have at
least one 1 in every column (if n*m) or in every
row (if n)m), while Q is constructed as described
in Section 2.1.1. For n"m the maximum payo!
is obtained if P has exactly one 1 in every row and
column (while every other entry is 0) and Q"PT
(Q is the transposed matrix of P). Such a matrix is
called a &&permutation matrix''. In general, the
maximum payo! is given by

F
max

(¸, ¸)"minMm, nN. (6)

3. Learning a Language

We will assume that individuals acquire a lan-
guage (a lexicon) by observing and imitating
other individuals. Speci"cally, we assume that
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each individual undergoes a &&learning phase''
during which it constructs an &&association
matrix'', A. A is an n]m matrix whose entries, a

ij
,

specify how often an individual has observed one
or several other individuals referring to object
i by producing signal j. Therefore, the entries
of A are nonnegative integers. The active and
passive matrices are then derived from the associ-
ation matrix by normalizing rows and columns,
respectively:

p
ij
"a

ijNA
m
+
l/1

a
ilB, q

ji
"a

ijNA
n
+
l/1

a
ljB. (7)

Suppose individual I
2

learns from I
1
. We assume

that I
2
samples the responses of I

1
to every object

k times. In the limit kPR, I
2

will exactly repro-
duce I

1
's active matrix. For k"1, I

2
's associ-

ation matrix, A
2
, will be binary and P

2
"A

2
.

Thus, k"1 leads immediately to binary active
matrices.

Assume that all individuals of a population
speak the same language. Consider the stochastic
process

P
0
PA

1
PP

1
PA

2
PP

2
P2. (8)

A given active matrix, P
i
, is sampled to give an

association matrix, A
i`1

, which is then converted
into P

i`1
(and Q

i`1
) according to eqn (7). The

language changes over time because language
learning (constructing A from P) is a probabilistic
process. Without errors in language learning the
process will ultimately reach an absorbing state.
The absorbing states are given by the set of all
binary P matrices where each object is associated
with only one signal (but a given signal may refer
to several objects).

3.1. HOMONOMY AND SYNONYMY

There is a general understanding among
language scholars that homonomy is plentiful
in language (any common word in the dictionary
will have several meanings) whereas synonymy
is rare (it is hard to "nd two words that
have exactly the same meaning). Interestingly,
this observation is a direct consequence of
the language learning mechanism described by
eqn (9).
Homonomy refers to the case where we have
more than one non-zero entries in a column of
the active matrix of the language: thus two di!er-
ent objects (concepts) can be associated with the
same word. This situation is stable. Consider the
active matrix

P"A
1
1

0
0B.

If sampled by the child, it will lead to the associ-
ation matrix

A"A
k
k

0
0B,

which again leads to the same active matrix.
Homonomy is an absorbing state of our stochas-
tic process.

Synonymy refers to the case where we have
more than one non-zero entries in a row of the
active matrix: thus, the same object (concept) is
associated with two di!erent signals. This situ-
ation is not stable. Consider the active matrix

P"(0.5 0.5).

Binomial sampling will lead to an association
matrix which is slightly asymmetric resulting in
an asymmetric new P matrix, which most likely
gives rise to an even more asymmetric A matrix.
The only stable solutions are given by

P"(1 0) or P"(0 1),

where synonymy has disappeared.

4. Population Dynamics

Let us now consider a population of N indi-
viduals speaking languages ¸

1
to ¸

N
. Each in-

dividual talks to every other individual and
receives a total payo!,

F
I
"+

J

F(¸
I
, ¸

J
), (9)

where J"1,2, N, but JOI. We explore three
di!erent mechanisms for transmitting the lan-
guage from one generation to the next. These



FIG. 1. A common language evolves if individuals with a high payo! in the language game produce more o!spring and if
children learn the language of their parents. There are N"100 individuals communicating about n"5 objects using (up to)
m"5 signals. There are discrete generations. In one generation each individual is talking to every other individual. The
payo!s of all interactions are summed up. Individuals produce o!spring for the next generation proportional to their total
payo!. O!spring sample the active matrix from their parents thereby forming their own association matrix, A, between
objects and signs. For each object, k responses are sampled. Individuals derive their P and Q from their A. Initially, every
individual has a random A; a

ij
are taken from a uniform distribution on the interval (0, 1). The four panels show 20 runs each

for k"1, 4, 7, 10. All simulations eventually settle to binary P matrices achieving payo!s 6, 8, or 10. The case k"1 has the
fastest convergence to a common language but reaches on average a slightly lower "nal payo! than k"4, 7, or 10.
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mechanisms represent di!erent strategies for lan-
guage acquisition.

4.1. PARENTAL LEARNING

First, we assume that children learn the lan-
guage of their parents. Figure 1 shows results of
computer simulations for this case. There is
a population of N"100 individuals using (up to)
m"5 signals to communicate n"5 objects. Ini-
tially, all individuals have random matrices. In
each generation, every individual &&talks'' to all
others and the payo!s are summed up. The total
payo! for each individual is given by eqn (10).
For the next generations, o!spring are produced
proportional to the total payo! of an individual:
the chance that a particular individual arises
from individual I is given by F

I
/+

J
F
J
. There is no

sexual reproduction. Each individual has one
parent. The individuals of the new generation
learn the language of their parents by sampling
their responses to speci"c objects. Each indi-
vidual forms its association matrix, A, by record-
ing k responses of its parent to each object.

Figure 1 shows 20 runs for four di!erent values
of k: 1, 4, 7, 10. Starting from a random initial
condition, the population converges to a com-
mon language. The evolutionary optimum is
reached if every word is associated with exactly
one signal (and vice versa). This optimum (which
results in a payo! of 5 points) is reached often,
but not always. Sometimes the population settles
for a language where two di!erent signals are
associated with one object, whereas another sig-
nal is used for two di!erent objects. This sub-
optimum case achieves payo! 4. Payo! 3 is
also reached occasionally. In this case, either the
same signal is used for three di!erent objects, or
there are two pairs of objects each associated
with one signal. There is no signi"cant di!erence
in the average "nal outcome for di!erent values
of k. For higher values of k, however, the popula-
tion takes a longer time to converge to a common
language.
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4.2. ROLE MODEL LEARNING

A di!erent concept is that language may confer
a certain reputation in the group, which can be
associated with an increased chance of imitation
by members of the next generation. In this case, it
seems at "rst sight unimportant whether success-
ful individuals also produce more genetic o!-
spring; they transmit their language culturally.
Therefore, we consider a scenario in which indi-
viduals with a high payo! have a higher chance
of being imitated. The probability that a member
of the new generation samples the active matrix
of individual I of the previous generation is given
by F

I
/+

J
F
J
. Each individual samples K indi-

viduals of the previous generation. For K"1,
this process leads to the identical algorithm as for
the case described in Section 4.1. Thus, parental
learning and role model learning can be de-
scribed using the same formalism. The equiva-
lence breaks down for K'1; there can be only
FIG. 2. A common language evolves if children learn their la
a high payo!. There are N"100 individuals communicating
discrete generations. In one generation each individual is talk
are summed up. Each individual of the next generation choses
responses (1 response per object per individual is sampled). P an
chosen for being sampled is proportional to its payo! in the lan
of passing on their language. The four panels show 20 runs each
P matrices achieving payo!s 6, 8, or 10. The case K"1 has th
average a slightly lower "nal payo!. K"10 has slowest conver
is, however, a coincidence. In simulations using 100 runs per K-
although K"1 performs clearly worse.
one genetic parent (without sexual reproduction),
but several cultural parents. (Note the di!erence
between K and k: the parameter K denotes
the number of individuals that are sampled, while
k counts how often a given individual is sampled.)

Figure 2 shows computer simulations for
K"1, 4, 7, 10. For K"1, we have rapid conver-
gence; the average payo! is equivalent to that
found in Fig. 1. For K'1, convergence takes
much longer, but the average payo! is signi"-
cantly higher than for K"1. There is, however,
no signi"cant di!erence between K"4, 7 and 10.

4.3. RANDOM LEARNING

Finally, we consider the situation where chil-
dren learn the language of random members of
the previous generation, irrespective of their
payo!. There is no (direct) reward for high payo!
and consequently no selection on improving
language e$ciency. Nevertheless, the resulting
nguage from individuals in the previous generation who have
about n"5 objects using (up to) m"5 signals. There are

ing to every other individual. The payo!s of all interactions
K individuals of the previous generation and samples their
d Q are derived from A. The probability that an individual is

guage game. Thus successful individuals have a higher chance
for K"1, 4, 7, 10. All simulations eventually settle to binary
e fastest convergence to a common language but reaches on

gence, but reaches this maximum payo! in 20 of 20 cases. This
value, there is no signi"cant di!erence between K"4, 7 or 10,



FIG. 3. A common language also evolves if children learn their language from randomly chosen individuals of the previous
generation irrespective of any payo!. In this case, however, there is no reward for e$cient communication. The active matrix,
P, is not at all optimized but drifts to an arbitrary binary matrix. (Note that the binary matrices are the absorbing states of this
random process). All parameter values are as for Fig. 2, but each individual samples K randomly chosen individuals of the
previous generation. Note that convergence is much slower than in Fig. 2 and leads on average to lower "nal payo!.
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stochastic process can lead to fairly e$cient com-
munication systems, because the absorbing states
of the high-dimensional &&random walk'' are ran-
dom binary matrices, which on average achieve
a higher payo! than random matrices where the
entries are numbers between 0 and 1. In Appen-
dix A, we discuss the combinatorics of these
binary matrices and calculate their average
payo! as well as the fraction of random binary
matrices that obtain maximum payo!: as m gets
large compared to n, the average "tness ap-
proaches the maximum "tness and the fraction of
binary matrices that achieve maximum "tness
converges to 1.

Figure 3 shows computer simulations for the
case where children learn their language from
K random individuals of the previous generation,
irrespective of their payo!. Convergence to
a common language is slower for larger values of
K and in general, the convergence is slower than
in Figs 1 and 2. For all values of K, however, the
same average payo! is achieved. The distribution
of payo! values simply re#ects the statistics of
random binary matrices. Note that the math-
ematical algorithm for modelling random trans-
mission in Fig. 3 does not require any payo!
evaluation as the payo! achieved in the language
game is totally irrelevant here.

5. Take Advantage of Mistakes

Let us add another fundamental feature to our
model: language acquisition should be error-
prone. Assume that with probability, o, a learn-
ing individual mistakes the response of another
individual for a randomly chosen response. Thus
with probability 1!o the learning individual
makes the correct entry into its association
matrix, A, while with probability o it makes
a random entry for this particular object. (Here
we consider errors in language learning; for the
e!ect of errors in communication we refer to
Nowak & Krakauer, 1999.)

Figure 4 shows the same simulation as Fig. 1
(for k"1) but with four di!erent noise levels
(o"0.0001, 0.001, 0.01 and 0.1). For low noise
levels (o"0.0001 and 0.001) the system behaves
similar to Fig. 1. For o"0.01, however, all



FIG. 4. Errors during language acquisation favour the evolution of more e$cient languages. Here the simulations of Fig.
1 with k"1 are repeated but individuals make mistakes during language learning: with probability o the response of
another individual to a given object is mistaken for a randomly chosen response. For small levels of noise, o"0.0001 and
0.001, there is not much di!erence compared to the case without errors. For o"0.01 all simulations converge to a global
optimum. For o"0.1 the system does not evolve e$cient communication. Thus there seems to be an optimum error rate.
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simulations converge to the maximum payo!
where each signal is associated with exactly one
object. Errors prevent the system from getting
trapped in sub-optimum situations where the
same signal would be used for two or more ob-
jects. For high probabilities of mistakes (o"0.1)
the optimization ability of the system is impaired.

Thus, without noise the system converges to
one of the absorbing states (given by all random,
binary P matrices). As long as there is still hetero-
geneity in the population there is selection for
better adapted and more e$cient languages.
Once each individual speaks the same language,
there is no longer the possibility of change. Er-
rors, however, introduce a constant degree of
variation upon which natural selection for more
e$cient languages can act. Therefore, errors in
language learning can lead to the evolution of
a more e$cient language. There is an interesting
dependency on the error rate: small amounts of
noise do not provide enough variability, large
amounts of noise introduce too much variability,
in between there is an optimum error rate.

The bene"t of noise for language evolution is
reminiscent of other situations where noise can
improve the optimization properties of a system:
in many evolutionary models there are optimum,
non-zero mutation rates; optimum levels of noise
can jiggle neural networks out of local optima;
noise is the basis of the optimization method
called simulated annealing.

In contrast, errors have only detrimental ef-
fects on the language acquisition mechanism for
imitating randomly chosen individuals. Figure 5
shows computer simulations which repeat the
simulations of Fig. 3(a) with noise. Individuals
learn their language from one randomly chosen
individual from the previous generation (K"1).
Four levels of noise are studied. For o"10~5 the
evolution to a common language is essentially
una!ected. For o"10~4 the system converges to
a common language, but there are occasional
#uctuations that generally reduce the average
payo! of the population. For o"10~3 conver-
gence to a common language is still observed, but
variation and #uctuations in the average payo!
are there all the time and dominate the scenario.
For o"10~2 (or greater) there is no longer any
convergence to a common language. Remember
that for this level of error, o"10~2, the system



FIG. 5. Increasing amounts of noise make random sampling ine!ective. Here the simulations of Fig. 3 are repeated for
rho"0.00001, 0.0001, 0.001 and 0.01. For small values of o the system manages to converge to a common language (which is
represented a randomly chosen binary active matrix). For larger values of o the population no longer converges to
a common language. Thus errors during language acquisition have very di!erent e!ects on systems where individuals
sample their parents (or other individuals with high payo! ) as opposed to systems where individuals sample randomly
chosen individuals. Five runs are shown for each value of o. For all runs we have K"1.
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where individuals imitate their parents always
converged to optimum "tness (see Fig. 4).

Therefore, the quasi-accidental evolution of
a common language which emerges when indi-
viduals imitate other randomly chosen indi-
viduals is impaired by mistakes during language
acquisition. An interesting task here would be to
develop an analytic framework for understanding
the error-threshold phenomenon that operates
here: below a critical level of o the evolution of
a common language is possible; above this level
coherence is no longer achieved.

6. Competition among Di4erent Strategies

We have considered the performance of di!er-
ent mechanisms of language acquisition and
described how e$ciently they can drive the
evolution of a common language. Now, we ana-
lyse the competition among individuals using dif-
ferent language acquisition devices.

Figure 6 tests parental vs. random learning.
&&Random players'' (that learn the language from
randomly chosen individuals of the previous gen-
eration) compete with players that learn the lan-
guage of their parents. The error rate is 0. The
payo! in the language game is interpreted as
"tness. Individuals with a higher payo! leave
more o!spring which inherit the language ac-
quisition strategy of their parents. Initially, 80%
of individuals are random players; 20% learn the
language of their parents. Initially, everyone
starts o! with random P matrices. As a common
language evolves (that is as the average payo!
increases) the fraction of random players declines.
Thus individuals who learn their parents' lan-
guage seem to acquire an e$cient language more
rapidly. This is not unexpected, because these
individuals learn the language of someone who
was at least "t enough to reproduce. They have
a higher chance of acquiring a better adapted
language. Once everyone speaks the same lan-
guage, however, there is no longer selection
against the random players. Neutral drift deter-
mines the "nal outcome.

Figure 7 repeats the simulation of Fig. 6 with
an error rate of o"0.001. In all 10 runs the
random players become extinct. Furthermore, in



FIG. 6. It is better to learn from your parents than from
random members of the population. The simulation com-
pares the performance of two di!erent strategies: (i) indi-
viduals who learn the language of their parents; and (ii)
individuals who learn the language of an arbitrary member
of the community (so called &&random players''). The popula-
tion size is 200. Initially 80% of the population are random
players. The "gure shows the increase in the average payo!
as the community evolves a common language and the
decrease of the fraction of random players. Note that the
frequency of random players decline as long as the popula-
tion is in the state of improving its language; once everyone
speaks the same language there is no longer a di!erence in
the performance of the two strategies (and random drift will
eventually drive one of them to extinction). Parameters:
n"5, m"5, every individual samples one other individual
once (i.e. K"1 and k"1), 10 runs are shown.

FIG. 7. Take advantage of mistakes. The possibility of
errors during language acquisition enables the system to
reach the global optimum. Furthermore, such errors intro-
duce a consistent selection pressure against the random
players. The "gure shows 10 simulation for exactly the same
parameter values as in Fig. 4. The only di!erence is that
individuals can make mistakes while learning the language:
with probability o, the response of another individual to
a particular object is mistaken for another (randomly
chosen) response, We use o"0.01. In 10 of 10 runs, the
random players become extinct and the population con-
verges to the maximum payo! were each object is associated
with exactly one signal and vice versa.
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all 10 cases the population converges to the max-
imum "tness, where each object is associated with
exactly one word. Errors make a di!erence.

In Fig. 8, we expand this theme and analyse
competition among strategies of language ac-
quisition that are described by integers M, such
that an individual playing strategy M learns its
language by sampling its parent together with
M randomly chosen individuals. We consider the
strategies M"0, 1, 2, 3 and 4. M"0 denotes the
strategy where individuals only learn from their
parents. Starting with equal proportions of all
strategies, we "nd that M"0 wins in all 10 runs.
All other strategies become extinct. Thus learning
from randomly chosen individuals in addition to
your parents seems to be disadvantegeous.

Figures 6}8 can also be interpreted as analys-
ing the competition between role model and ran-
dom learning. (Remember that for K"1 the
algorithms for biological and cultural transmis-
sion are identical.) Thus, learning the language
from individuals with a high payo! in the lan-
guage game is better than learning from random
individuals. Hence, both role model and parental
learning outperform random learning.

But what about parental vs. role model learn-
ing? Clearly, there is no di!erence in our model



FIG. 8. In the presence of errors, is it better only to
acquire the language from the parents or acquire the lan-
guage from the parents and some other, randomly chosen
individuals? Strategy, M, denotes the number of individuals
that are sampled in addition to the parents. That is, every
individual samples its parents and M other individuals of
the previous generation. In our simulation, M varies from
0 to 4. In 10 out of 10 runs the average strategy of the
population eventually converges to 0. In all runs the average
payo! eventually converges to its maximum value. Same
parameters as in Fig. 5.
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between learning from the parent or one other
individual chosen proportional to its payo!, but
is it better to imitate only the parent or the parent
and some other players proportional to their
payo! ? The question is equivalent to whether it
is better to have only one or several role models.
In Section 4.2 (and Fig. 2), we saw that learning
from one role model led to a faster optimization,
but learning from more than one role model
usually led to a higher average "tness. Here we
study the direct competition among these strat-
egies and include errors. We performed the same
simulations as for Fig. 8, analysing the competi-
tion among strategies that learn from their par-
ents and M other individuals of the previous
generation which are selected proportional to
their payo!. Again using the concept of errors
during language acquisition (with o"0.001), we
performed 100 runs starting with equal propor-
tion of all strategies, M ranging from 0 to 4.
The outcome is inconclusive. Fifty-"ve runs
converged to a homogeneous population with
M"0, whereas 36 runs converged to homogene-
ous populations with M either 1, 2, 3 or 4. (Nine
runs still contained a mixture of strategies after
1000 generations.) Hence, it does not seem to
make much di!erence whether the language is
learned from one relatively successful individual
(the parent) or several. A clearer understanding of
the di!erential e!ects of such strategies means
considering repeated rounds of learning and
communication during each generation.

An interesting issue in linguistics is the di!er-
ence between learning the language from the par-
ents vs. learning from other individuals. While
early language acquisition is clearly from the
parents, later on children seem to adopt the lan-
guage and accent of their peers, not their parents.
A possible explanation is that language serves as
an important tool of identi"cation between and
within peer groups. While it should be possible to
explore this fascinating question with the math-
ematical framework developed here, it is beyond
the scope of the current paper.

7. Conclusions

We presented a general mathematical frame-
work for studying the evolution of a simple com-
munication system. Starting from random initial
conditions we demonstrated how a population
can evolve a common language, where speci"c
words are associated with speci"c objects. The
words that evolve in our simulations are arbit-
rary, discrete and referential.

We analysed the evolutionary properties of
three mechanism of language acquisition: (i) Par-
ental learning implies that children learn the lan-
guage of their parents. (ii) Role model learning is
based on the concept that the payo! in the lan-
guage game is related to reputation. Children
learn the language of individuals with a high
reputation. (iii) Random learning describes the
situation where children learn the language from
randomly chosen individuals from the previous
generation.
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Only for parental learning do we directly as-
sume that language confers increased biological
"tness (better communicators have more o!-
spring). For role model learning, language con-
fers reputation (better communicators have more
immitators), while for random transmission the
payo! in the language game appears to be totally
irrelevant. Our results demonstrate that parental
learning and role model learning are e!ectively
indistinguishable, and are in fact identical when
individuals learn from a single role model. (How-
ever, our model does not consider deceit, and this
will be minimized by either kin selection acting
on parental learning, or in structured popula-
tions, where limited mobility favours honesty.)

Random learning consistently underperforms
both parental learning and role model learning.
In fact, random transmission can be modelled
without any payo! evaluation; the individuals
only have to imitate others. It is important, how-
ever, to emphasize that for the evolutionary stab-
ility of language there must always be an implicit
assumption that language confers biological
"tness. Otherwise, individuals who opt not to
participate in language learning and commun-
ication, would be neutral and therefore would
not be selected against. This in e!ect states that
individuals who speak a sort of gibberish, could
eventually come to dominate the population.
While it is very di$cult to relate the complexities
of language to biological "tness, it is not so di$-
cult to "nd examples where linguistic imperfec-
tions exclude speakers from dominant (cultural)
positions. It becomes a separate issue to relate
status to long-term reproductive success (in
humans).

Without errors during language acquisition,
all three mechanisms can lead to a common lan-
guage. The "nal state is reached when each object
is associated with exactly one signal. The same
signal, however, may be associated with several
objects. Thus our models provide one simple
account for why true synonyms should be rare,
while homonyms are plentiful. This discrepancy
arises out of the dynamics of the learning process,
in particular, the fact that synonyms are expected
to disappear over several learning trials.

For parental and role model learning, the "nal
state is optimized for performance; in the process
of convergence toward the "nal state there is
selection for languages with higher payo!. For
random learning, this is not the case, and the "nal
state is a completely randomly chosen binary
matrix. There is, however, some accidental
optimization for random learning, because a
randomly chosen binary P matrix leads on an
average to higher payo! than a random P matrix
whose entries are real numbers between 0 and 1.
(Hurford, 1989, used random transmission to
study the acquisition of signs and hence his simu-
lations are to a large extent based on this optim-
ization property of the stochastic process.)

By allowing errors during language acquisition
there is strictly speaking no "nal state and evolu-
tion will continue inde"nitely. For parental and
role model learning, there is an optimum error
rate that maximizes the performance of the sys-
tem: the chance of reaching a global optimum is
increased as the system does not remain at local
optima. This is of course analogous to an anneal-
ing process, whereby stochasticity can prevent
"xation on local optima. The interesting question
is whether children employ low levels of error, in
an e!ort to make learning more e$cient. Thus
mistakes during acquisition would be viewed as
an essential, rather than incidental component of
language learning. In contrast, random learning
is impaired by the presence of errors: if the error
rate is above a small threshold value random
learning does not work at all.

The interesting complications, which lead to
di!erent possibilities for formulating a language
game dynamics, arise here because the language
of an individual (P and Q), determines its "tness,
but what is inherited from the parents is a mecha-
nism for acquiring a language*a language ac-
quisition device. In standard evolutionary game
theory (Maynard Smith, 1982; Sigmund, 1995;
Hofbauer & Sigmund, 1998), o!spring inherit
a strategy from their parents and this strategy
determines the individual's (frequency-depen-
dent) "tness. In the language game, children in-
herit a device for acquiring a language from
others in the population. Thus, the language that
they learn depends on what others are doing and
is therefore frequency dependent. In the evolu-
tionary language game, not only the "tness of
individuals, but also their language is frequency
dependent. Thus there is the possibility for de-
coupling cultural and biological "tness. This
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could lead to the emergence of speci"c linguistic
practises that were biologically deleterious,
nevertheless maintained by biological selection
on the acquisition strategy.
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APPENDIX A

Counting Random Binary Matrices

In this appendix, we describe how to count and
classify all binary P matrices, which are the ab-
sorbing states for the dynamical systems dis-
cussed in Section 4. In other words, we focus our
attention on n]m binary matrices with a single
1 in each row. There are clearly mn such matrices.
The more di$cult combinatorics of the classi"ca-
tion occur in the case when n)m, which we will
now consider.

We would like to classify these matrices by the
"tness which they yield. Let us denote the num-
ber of matrices yielding "tness i by Z

i
. The max-

imum possible "tness is, of course, 2n. There are
clearly Z

n
"m!/(m!n)! such maximal-"tness

matrices. However, we also want expressions for
the number of sub-optimal matrices, i.e. for Z

n~1
,

Z
n~2

,2, Z
1
. Notice that if we count each Z

n~k
correctly then we will have the equality
+k/n~1
k/0

Z
n~k

"mn.
Working from the de"nition of Z

n~k
, we derive

the following expression for the number of ma-
trices yielding "tness n!k:

Z
n~k

" +
t1, t2,2, tm

A
n

t
1
#1BA

n!(t
1
#1)

t
2
#1 B2

A
n!+m~1

i/1
(t
i
#1)

t
m
#1 B

(m!a)!
(m!n#k)!

,

where we sum over all partitions t
1
,2, t

m
satis-

fying:

t
i
*0,

t
1
#t

2
#2t

m
"k,

t
i
)n!1,

k#a)n,

where a"dMt
i
Dt
i
'0N.

Moreover, in each term of the expression above
we only want to include the factors involving t

i
and t

i
'0. We can rewrite our expression for

Z
n~k

as

Z
n~k

"

n!
(m!n#k)!

] +
Mt1,2, tmN

(m!a)!
(t
1
#1)!(t

2
#1)!2(t

m
#1)!(n!k!a)!

,

where the sum is taken over the same set of
partitions t

i
as before.

Table 1 shows numerical results for n"4 and
m"4, 5,2, 15. For each value of m we report
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the average "tness,

fM"
2
mn

n
+
i/1

i )Z
i
,

as well as the proportion of matrices which have
maximum "tness,

P
n,m

"

Z
n

mn
.

We see that the average "tness, fM, approaches the
maximum value 2n for increasing values of m.
There is a simple, analytic explanation for this
trend. When n is "xed, notice that

lim
m?=

P
n,m

" lim
m?=

Z
n

mn

" lim
m?=

m!
(m!n) !(mn)

" lim
m?=

(m)(m!1)(m!2)2(m!n#1)
mn

" lim
m?=

mn#lower powers of m
mn

"1.

In other words, as m gets large, the fraction of
matrices which yield maximum "tness ap-
proaches 1. As a result, the average "tness ap-
proaches the maximum "tness, n. Thus, learning
the language from random individuals irrespect-
ive of their payo! in the language game can lead
to a fairly e$cient language especially if m is
signi"cantly larger than n.

As a speci"c example, we consider n"m"4.
In this case,

Z
n
"4!"24.

For Z
n~1

we consider the four partitions

1"1#0#0#0,

1"0#1#0#0, etc.

to obtain

Z
n~1

"4 )A
4!
1!

3!
2!2!B"144.
For Z
n~2

, we must consider the four partitions

2"2#0#0#0,

2"0#2#0#0, etc.

and also the (4
2
) partitions

2"1#1#0#0,

2"1#0#1#0, etc.

to obtain

Z
n~2

"

4!
2! A4 )

3!
3!1!

#A
4
2B

2!
2!2!0!B"84.

For Z
n~3

, we consider all the partitions

3"3#0#0#0, etc.

3"2#1#0#0, etc.

3"1#1#1#0, etc.

But notice that only the partitions of 3 in which
a"1 satisfy k#a)n, so that according to our
formula

Z
n~3

"4 )A
4!
3!

3!
4!0!B"4.

Finally, we check that Z
n
#Z

n~1
#Z

n~2
#

Z
n~3

"256"mn, as desired.

APPENDIX B

A Paradoxical Result on Mutual Understanding

If P and Q are unrelated in an individual, then
it is easily possible to construct 2 languages ¸

1
and ¸

2
that understand each other better than

themselves. Thus, we may have

F(¸
1
, ¸

1
)(F(¸

1
, ¸

2
)"F(¸

2
, ¸

1
)'F(¸

2
, ¸

2
).

(7)
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A simple example is

P
1
"A

1
0

0
1B, Q

2
"A

0
1

1
0B,

and

P
1
"A

0
1

1
0B, Q

2
"A

1
0

0
1B.

Here, F(¸
1
, ¸

1
)"F(¸

2
, ¸

2
)"0 whereas F(¸

1
,

¸
2
)"F(¸

2
, ¸

1
)"2.

An interesting question is how closely related
P and Q must be such that this paradoxical
situation is not possible?
Note that the coupling of P and Q via an
association matrix, see eqn (9), is not strong
enough to exclude this possibility. An example is
given by the 2 association matrices

A
1
"A

23
66

77
34B and A

2
"A

1
34

99
66B.

If P
1
, Q

1
and P

2
, Q

2
are the constructed accord-

ing to eqn (9) then we "nd F(¸
1
, ¸

1
)"2.3743..,

F(¸
1
, ¸

2
)"F(¸

2
, ¸

1
)"2.3894..; and F(¸

2
, ¸

2
)"

2.3771... Hence ¸
1

and ¸
2

understand each other
better than themselves. In evolutionary game dy-
namics the two languages are in equilibrium.
Both languages have an advantage when rare!
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